# Auckland Marine Sediment Contaminant Monitoring: Data report for November 2015 sampling

August 2016

Technical Report 2016/020





# Auckland Marine Sediment Contaminant Monitoring: Data report for November 2015 sampling

August 2016

Technical Report TR2016/020

Auckland Council Technical Report TR2016/020 ISSN 2230-4525 (Print) ISSN 2230-4533 (Online)

ISBN 978-0-9941404-2-5 (Print) ISBN 978-0-9941404-3-2 (Pdf) This report has been peer reviewed by the Peer Review Panel.

Submitted for review on 17 June 2016 Review completed on 18 August 2016 Reviewed by one reviewer

Approved for Auckland Council publication by:

Name: Dr Lucy Baragwanath Position: Manager, Research and Evaluation Unit (RIMU)

Name: Jacqueline Anthony Position: Manager, Environmental Monitoring Research and Evaluation (RIMU)

Date: 18 August 2016

Recommended citation

Mills, G N (2016). Auckland marine sediment contaminant monitoring: data report for November 2015 sampling. Prepared by Diffuse Sources Ltd for Auckland Council. Auckland Council technical report, TR2016/020

#### © 2016 Auckland Council

This publication is provided strictly subject to Auckland Council's copyright and other intellectual property rights (if any) in the publication. Users of the publication may only access, reproduce and use the publication, in a secure digital medium or hard copy, for responsible genuine non-commercial purposes relating to personal, public service or educational purposes, provided that the publication is only ever accurately reproduced and proper attribution of its source, publication date and authorship is attached to any use or reproduction. This publication must not be used in any way for any commercial purpose without the prior written consent of Auckland Council. Auckland Council does not give any warranty whatsoever, including without limitation, as to the availability, accuracy, completeness, currency or reliability of the information or data (including third party data) made available via the publication and expressly disclaim (to the maximum extent permitted in law) all liability for any damage or loss resulting from your use of, or reliance on the publication or the information and data provided via the publication. The publication, and data contained within it are provided on an "as is" basis.

# Auckland Marine Sediment Contaminant Monitoring: Data report for November 2015 sampling

Dr Geoff Mills Diffuse Sources Ltd

#### **Executive summary**

This document describes the marine sediment contaminant monitoring undertaken in October-November 2015, for Auckland Council's Regional Sediment Contaminant Monitoring Programme (RSCMP).

Sediments from a total of 21 sites were sampled for chemical contaminants: 20 RSCMP sites (of which, 17 were from the former Regional Discharges Project (RDP), and two from the former State of the Environment (SoE), monitoring programmes) and one site from the Central Waitemata Harbour benthic ecology programme (CWH).

The RSCMP sites were sampled by NIWA between 5 and 26 November 2015, and the one CWH site (Hobsonville) by Auckland Council (AC) on 12 October 2015.

This report summarises the sediment contaminant and particle size distribution (PSD) data obtained from the sampling.

Samples used for sediment chemistry analysis were processed (homogenised, freezedried and sieved) by the NIWA Hamilton laboratory. Five replicates from each site were analysed by R J Hill Laboratories (Hamilton) for the following heavy metals: copper (Cu), lead (Pb), zinc (Zn), arsenic (As), and mercury (Hg).

Only total recoverable metals, on the <500µm fraction, were analysed. This is a departure from previous sediment chemistry monitoring, in that the weak acid extractable metals in the <63µm fraction were not analysed. This is because quality assurance (QA) data accumulated since 2011, and field results from earlier SoE programme monitoring, indicate that year-to-year analytical variability for extractable metals has been too high for reliable use in trend monitoring. The QA data indicate that the total recoverable metals results have been more consistent, and therefore better suited for on-going monitoring. A summary of the QA data can be found in each annual monitoring report, the latest previous report including extractable metals data being Mills (2015).

Three replicate samples from each site were also analysed for particle size distribution (PSD) by NIWA (Hamilton).

Benthic ecology sampling was also conducted for 16 of the RSCMP sites (and from the Hobsonville CWH Eco site) and the preserved samples were analysed by NIWA. These data have been reported separately to the Auckland Council by NIWA.

This report provides:

- sediment metals data;
- sediment PSD data; and
- quality assurance data for sediment metals and PSD.

Single site reports (SSRs), which summarise the status and trends in sediment contaminants and PSD, have been updated to include the 2015 results, and have been provided separately to the Auckland Council.

The quality assurance data collected with the November 2015 samples indicated that the total recoverable metals data were of an acceptable quality, which was generally consistent with the previous RDP/RSCMP results.

The QA data for PSD showed low variability and good comparability with the results from the previous monitoring batches (November 2011 to June 2015). Based on the QA data collected to date, the PSD data are deemed to be reliable.

Overall, the November 2015 monitoring data for total recoverable metals and PSD were similar in quality to those obtained in previous years and are considered acceptable for use in the RSCMP status and trend assessment programme.

# Table of contents

| 1.0  | In  | troduc | etion6                                   |
|------|-----|--------|------------------------------------------|
| 2.0  | Sa  | amplir | ng and analysis7                         |
| 2.1  |     | Samp   | ling7                                    |
| 2.2  |     | Samp   | le preparation                           |
| 2.3  |     | Analy  | sis8                                     |
| 2.4  |     | Conce  | entration units for metals               |
| 3.0  | Q   | uality | Assurance10                              |
| 3.1  |     | Proce  | dural blanks11                           |
| 3.2  |     | Refer  | ence materials11                         |
| 3.3  |     | Withir | n-batch data variability19               |
| 3.4  |     | Bulk F | Reference Sediment results20             |
| 3.5  |     | Data   | quality summary                          |
| 4.0  | Re  | eferer | ices                                     |
| Appe | ndi | хA     | Sediment contaminant data                |
| Appe | ndi | хB     | Particle size distribution data          |
| Appe | ndi | хC     | NIWA metals data quality assurance check |
| Appe | ndi | хD     | R J Hill Laboratories report             |

# List of figures

| Figure 3-1: Certified Reference Material (CRM) quality control data for Total Recoverable  |
|--------------------------------------------------------------------------------------------|
| Metals15                                                                                   |
| Figure 3-2: Trends in total recoverable metals in Certified Reference Material16           |
| Figure 3-3: Total recoverable Cu, Pb, and Zn results for freeze-dried (FD) bulk reference  |
| sediments21                                                                                |
| Figure 3-4: Total recoverable As and Hg results for freeze-dried (FD) bulk reference       |
| sediments                                                                                  |
| Figure 3-5: Particle size distribution (PSD) results for frozen bulk reference sediments29 |

# List of tables

# 1.0 Introduction

This document provides a summary of the marine sediment contaminant monitoring undertaken by NIWA in October-November 2015 for the Auckland Council Regional Sediment Contaminant Monitoring Programme (RSCMP). The RSCMP monitoring was formerly conducted as the Regional Discharges Project (RDP) and State of the Environment (SoE) programmes.

This report provides a summary of:

- Sampling undertaken;
- Sediment chemistry and particle size distribution (PSD) results; and
- Quality assurance (QA) data.

Single Site Reports (SSRs), which summarise sediment contaminant status and trends at each site, have been reported separately to the Auckland Council. Copies of the SSRs can be obtained from the Research and Evaluation Unit (RIMU).

# 2.0 Sampling and analysis

#### 2.1 Sampling

Sediments from a total of 21 sites were sampled for chemical contaminant analysis: 20 RSCMP sites (of which, 17 were from the former Regional Discharges Project (RDP), and two from the former State of the Environment (SoE), monitoring programmes) and one site from the Central Waitemata Harbour benthic ecology programme (CWH).

The RSCMP sites were sampled by NIWA between 5 and 26 November 2015, and the one CWH site (Hobsonville) by the Auckland Council (AC) on 12 October 2015.

Sampling followed the procedures detailed in the ARC "monitoring blueprint" document, ARC Technical Publication 168 (ARC 2004).

Benthic ecology sampling was also done for 16 of the RSCMP sites (and for the Hobsonville CWH Eco site) and the preserved samples were analysed by NIWA. These data have been reported separately to the Auckland Council by NIWA.

A list of sites, sampling dates, and analyses conducted at each site are given in Table 2 1. More detailed information on the sites selected for monitoring, including their locations, key physical characteristics, and sediment contaminant status and trends, is provided in the SSRs. The rationale for the chemical contaminants measured and sampling strategy are given in TP 168 (ARC 2004).

|                     |                       |           |               |            | <500 µm fraction |                 |               |
|---------------------|-----------------------|-----------|---------------|------------|------------------|-----------------|---------------|
| Site                | Marine Reporting Area | Programme | Sampling Date | Sampled by | Cu Pb Zn As Hg   | Benthic Ecology | Particle Size |
| Benghazi            | Tamaki                | RSCMP     | 25/11/2015    | NIWA       | $\checkmark$     | ✓               | ✓             |
| Bowden              | Tamaki                | RSCMP     | 25/11/2015    | NIWA       | ✓                | ✓               | ✓             |
| Chelsea             | Central Waitemata     | RSCMP     | 24/11/2015    | NIWA       | $\checkmark$     | ✓               | ✓             |
| Coxs                | Central Waitemata     | RSCMP     | 6/11/2015     | NIWA       | ✓                | ✓               | ~             |
| Harania             | Manukau               | RSCMP     | 26/11/2015    | NIWA       | ✓                | ✓               | ~             |
| Henderson Lower     | Central Waitemata     | RSCMP     | 24/11/2015    | NIWA       | ✓                | ✓               | ✓             |
| Hillsborough        | Manukau               | RSCMP     | 5/11/2015     | NIWA       | ✓                | х               | ✓             |
| Hobsonville CWH Eco | Upper Waitemata       | CWH Eco   | 12/10/2015    | AC         | $\checkmark$     | ✓               | ✓             |
| Mill Bay            | Manukau               | RSCMP     | 5/11/2015     | NIWA       | $\checkmark$     | х               | ✓             |
| Pahurehure Middle   | Manukau               | RSCMP     | 6/11/2015     | NIWA       | $\checkmark$     | ✓               | ✓             |
| Pahurehure Upper    | Manukau               | RSCMP     | 6/11/2015     | NIWA       | $\checkmark$     | ✓               | ✓             |
| Papakura Lower      | Manukau               | RSCMP     | 6/11/2015     | NIWA       | $\checkmark$     | ✓               | ✓             |
| Princes             | Tamaki                | RSCMP     | 25/11/2015    | NIWA       | ✓                | ✓               | ✓             |
| Puhinui Upper       | Manukau               | RSCMP     | 7/11/2015     | NIWA       | ✓                | ✓               | ✓             |
| Pukaki Airport      | Manukau               | RSCMP     | 7/11/2015     | NIWA       | ✓                | ✓               | ✓             |
| Rarawaru            | Upper Waitemata       | RSCMP     | 24/11/2015    | NIWA       | $\checkmark$     | х               | ✓             |
| Roberta Reserve     | Tamaki                | RSCMP     | 26/11/2015    | NIWA       | $\checkmark$     | х               | ✓             |
| Shoal Hillcrest     | Central Waitemata     | RSCMP     | 9/11/2015     | NIWA       | $\checkmark$     | ✓               | ✓             |
| Tararata            | Manukau               | RSCMP     | 24/11/2015    | NIWA       | $\checkmark$     | ✓               | ✓             |
| Waimahia Central    | Manukau               | RSCMP     | 5/11/2015     | NIWA       | ✓                | ✓               | ✓             |
| Whau Entrance       | Central Waitemata     | RSCMP     | 24/11/2015    | NIWA       | ✓                | ✓               | ✓             |

Table 2-1 Sites sampled and analyses conducted in October-November 2015.

#### 2.2 Sample preparation

#### 2.2.1 Sediment chemistry samples

Five replicate samples for sediment chemistry analysis were taken at each site, using the protocol described in ARC (2004). All five replicates from each site were processed by homogenisation, freeze-drying, and sieving (<500µm) at NIWA Hamilton.

A sub-sample of each of the five replicates of the sieved and freeze-dried samples (<500µm) from each site were provided to R J Hill Laboratories (Hamilton) by NIWA for metal analysis on 18 January 2016.

Remaining freeze-dried <500µm sieved sediment from each replicate was archived in glass jars in the Auckland Council store.

#### 2.2.2 Particle size distribution samples

A composite sample from each site was used for particle size distribution (PSD) analysis. Each composite sample consisted of 10 sub-samples, each sub-sample being taken from the top 2cm immediately adjacent to sediment chemistry sample replicate #5 (i.e. the PSD composite was therefore equivalent to a sediment chemistry replicate sample). The PSD samples were analysed by NIWA.

#### 2.3 Analysis

Sediment samples were analysed for:

- Total recoverable metals copper (Cu), lead (Pb), zinc (Zn), arsenic (As), and mercury (Hg) – on the <500µm fraction, by R J Hill Laboratories (five replicates per site); and
- Particle size distribution (PSD) one composite sample per site. PSD analysis
  was undertaken by NIWA (Hamilton) using wet sieving/pipette separation into six
  size fractions, followed by oven drying each fraction to constant weight. This
  methodology is the same as that employed in the RSCMP/RDP/SoE programmes
  since 2009.

Only total recoverable metals, on the <500µm fraction, were analysed. This is a departure from previous sediment chemistry monitoring, in that the weak acid extractable metals in the <63µm fraction were not analysed. This is because the quality assurance (QA) data accumulated since 2011, and field results from earlier SoE programme monitoring, indicate that year-to-year analytical variability for extractable metals has been too high for reliable use in trend monitoring. The QA data indicate that total recoverable metals results have been more consistent, and therefore better suited for on-going monitoring. A

summary of the QA data can be found in each annual monitoring report, the latest previous report including extractable metals data being Mills (2015).

Sediment contaminant data are summarised in Appendix A, and PSD data are tabulated in Appendix B.

A summary of QA checks performed by NIWA on the analytical data provided by R J Hill Laboratories is given in Appendix C.

The analytical lab report from R J Hill Laboratories is provided in Appendix D.

#### 2.4 Concentration units for metals

As per the previous two rounds of RSCMP monitoring conducted in 2013 and June 2015, the sediment samples provided to R J Hill Laboratories for metal analysis were freezedried. No correction for residual moisture in the freeze-dried samples has been made. NIWA staff (Greg Olsen, pers. comm. May 2014) have indicated that their freeze-dried sediments (including fine, organic-rich sediment) typically have moisture contents of less than 2 per cent, and for sandy marine sediments usually <1 per cent. NIWA's analyses have found that the weighing errors for moisture correction are often higher than the mass difference measured between wet weight and oven-dry weight (overnight at 103°C). Therefore, moisture correction of the freeze-dried sediment results is not warranted, and has not been undertaken for the 2015 sample data reported here.

## 3.0 Quality assurance

For **metal analysis**, quality assurance (QA) was similar to previous years, and comprised the following:

- Laboratory quality control samples analysis of procedural blanks, duplicate samples reanalysed by the laboratory, analyses of Certified Reference Material (CRM; AGAL-10) and analysis of "in-house" reference sediment<sup>1</sup>. These data are reported in the Hill Laboratories QC Report, which is included in the lab report attached as Appendix D.
- Three CRM samples dispersed through the analytical run as extra samples (in addition to the routine laboratory CRM quality control samples).
- Analysis of the Auckland Council "Bulk Reference Sediments" (BRS). BRS are sediments from two sites (a sandy sediment from Meola Outer Zone, and a muddy sediment from Middlemore), which have been archived in frozen and freeze-dried forms for repeated analysis with each year's monitoring samples. Analysis of the BRS each year provides an on-going record of within-year and between-year analytical variability and changes over time (drift or trend). Three replicates of each of the Meola Outer and Middlemore BRS in freeze-dried form were analysed along with the 2015 sample batch for metals. No frozen BRS samples were analysed for metals in 2015, as previous BRS analysis has shown that total recoverable metals concentrations have been essentially equivalent in both forms (Mills 2015).

For **particle size distribution** (PSD), QA was conducted by analysis of three replicates of each of the sandy and muddy BRS sediments (frozen form only, as freeze-drying is likely to affect PSD).

A summary of QA checks performed by NIWA on the analytical data provided by R J Hill Laboratories is given in Appendix C. Key features of the QA data are summarised in sections 3.1 to 3.4, and an overall summary presented in section 3.5.

<sup>&</sup>lt;sup>1</sup> The R J Hill Laboratories "in-house" reference sediment – "QC A5". Compared with typical Auckland marine sediments, the QC A5 reference sediment has elevated concentrations of metals. Results are included in the R J Hill Laboratories QA/QC report (Appendix D) and in the NIWA QA assessment report (Appendix C).

#### 3.1 Procedural blanks

Metal concentrations in procedural blanks were below detection limits (D.L.). Total recoverable metal blanks were <0.2, <0.2, <0.04, <0.4, and <0.01mg/kg for As, Cu, Pb, Zn, and Hg respectively.

Therefore there was no background contamination introduced by the laboratory procedures that would contribute significantly to the reported metal concentrations.

#### 3.2 Reference materials

Two types of reference materials were used by Hill Laboratories as a quality control check for metal analysis:

- the certified reference material (CRM) "AGAL-10", Hawkesbury River Sediment, prepared by the Australian Government Analytical Laboratories. This reference material has been used in the RSCMP and preceding monitoring programmes since 2002 to check data accuracy and consistency over time; and
- an "in-house" laboratory reference material, "QC A5", a sediment sample prepared by Hill Laboratories for use in their QA/QC programme. Compared with typical Auckland marine sediments, the QC A5 reference sediment has very high concentrations of metals (and the results are therefore probably of less relevance to the RSCMP).

The reference material analyses involved extraction/digestion and ICP-MS analysis only, and did not include the homogenising/sub-sampling/sieving/drying steps undertaken for analysis of field samples. Results are included in the Hill Laboratories QA/QC report (Appendix D).

#### 3.2.1 Certified Reference Material analyses

Three CRM samples (AGAL 10) were included in the analytical run as "unknowns". In addition, R J Hill Laboratories' in-house QC checks included separate CRM analysis – another four CRM samples were analysed in the analytical batch containing the RSCMP samples.

CRM data are summarised in Table 3-1 (for the three CRM samples added as "unknowns") and Table 3-2 (for the four samples from the R J Hill Laboratories' in-house QC programme).

All CRM results were within the laboratory in-house limits. This means that the data met the laboratory's normal operating QC standards. Variability (coefficient of variation, CV, %) for CRM analysis ranged between 1.7 and 3.5 per cent for the three CRM samples added as "unknowns" and between 1.5 and 6.7 per cent for the four CRM samples from Hill

Laboratories' in-house QC programme, for various metal analyses, which is similar to data collected in previous years.

Comparisons between measured CRM concentrations and certified concentrations for the three CRMs analysed as unknowns with the RSCMP samples showed that the total recoverable metals were, on average, within ±1 s.d. of the certified concentration except for Zn, which was low.

All CRM concentrations were within 20 per cent of the certified concentrations:

- for the three CRM samples added to the 2015 sample batch, average total recoverable Zn concentrations were 12 per cent lower than the certified concentration, while the other metals ranged from 8 per cent low (Hg) to 1 per cent low (As). All individual CRM sample results for Zn were low, ranging from 10–14 per cent below the certified level, and a single Hg result was 11 per cent lower than the certified concentration.
- for the four CRM samples from Hill Laboratories' in-house QC programme which were analysed in the 2015 sample batch, the average total of Hg was 11 per cent low, while the other metals ranged from 10 per cent low (Zn) to 1 per cent high (As). All individual CRM sample results for Zn and two for Hg were low ranging from 8–14 per cent of the certified concentrations.

Overall, the CRM results indicate a reasonable level of accuracy and good precision for total recoverable metals in the November 2015 sample batch. However, these results apply only to the digestion and ICP-MS steps of the overall analysis method. Variability may be higher when sediment processing steps such as sieving and drying (which occur in the analysis of field samples) are included. The effects of these additional steps are included in the data obtained for the BRS QA samples (see section 3.4).

Comparisons of all the CRM results for the November 2015 sample batch, along with those obtained in previous RDP and RSCMP monitoring conducted between 2002 and November 2015, are shown in Figure 3-1 and Figure 3-2. These data indicate that the total metal results were comparable with those recorded in previous years.

There were no significant trends over time for total recoverable Cu, Pb or Zn (Mann Kendall test, annual medians<sup>2</sup>, p<0.05). The CRM results therefore indicate that the total recoverable metals data have been reasonably consistent over time, showing overall trends of <1 per cent of the median concentration per year.

<sup>&</sup>lt;sup>2</sup> The Mann Kendall trend test was conducted using TimeTrends software, using the "median within each time period" option.

Auckland marine sediment contaminant monitoring: November 2015

Overall, the CRM QC data provide a useful tool for monitoring the accuracy and variability of the analytical results for metals from the sediment monitoring programme. Continued analysis and reporting of CRM data is recommended.

Table 3-1: Total recoverable metals concentrations (mg/kg) in three Certified Reference Material (CRM; AGAL10) samples, included in the November 2015 sediment sample analytical batch.

The Certified Upper and Lower Limits listed in the table are the reference value  $\pm 1$  standard deviation. Yellow shaded values are outside this range (reference value  $\pm 1$  s.d.). Means, as % of certified values, are colour coded: Green within 10%, Amber within 10–20%, Red greater than 20% of the certified concentrations.

|                                                         | -     | Total Recoverable Metals (<500 μm) |       |        |       |  |  |  |
|---------------------------------------------------------|-------|------------------------------------|-------|--------|-------|--|--|--|
| Sample                                                  | As    | Cu                                 | Pb    | Hg     | Zn    |  |  |  |
| CRM - Agal 10 - 1                                       | 17.0  | 21.1                               | 38.6  | 11.0   | 49.4  |  |  |  |
| CRM - Agal 10 - 2                                       | 16.4  | 22.6                               | 40.2  | 10.8   | 51.2  |  |  |  |
| CRM - Agal 10 - 3                                       | 17.4  | 21.9                               | 39.1  | 10.3   | 50.2  |  |  |  |
| mean                                                    | 17.0  | 21.9                               | 39.3  | 10.7   | 50.2  |  |  |  |
| cv (%)                                                  | 2.9   | 3.3                                | 2.2   | 3.5    | 1.7   |  |  |  |
| Mean % of certified value                               | 98.6  | 94.2                               | 97.3  | 92.4   | 88.1  |  |  |  |
|                                                         |       |                                    |       |        |       |  |  |  |
| In-house lower limit (mg/kg; mean - 99% C.L.)           | 16.18 | 19.58                              | 32.48 | 10.023 | 46.1  |  |  |  |
| In-house upper limit (mg/kg; mean + 99% C.L.)           | 23.09 | 26.39                              | 48.42 | 13.61  | 62.74 |  |  |  |
| In-house 99% C.I. (mg/kg)                               | 6.91  | 6.8                                | 15.9  | 3.587  | 16.6  |  |  |  |
| In-house 99% C.I. (+/- % mean)                          | 17.6  | 14.8                               | 19.7  | 15.2   | 15.3  |  |  |  |
|                                                         |       |                                    |       |        |       |  |  |  |
| Certified Reference Value (mg/kg)                       | 17.2  | 23.2                               | 40.4  | 11.6   | 57    |  |  |  |
| Certified Lower Limit (mg/kg; reference value - 1 s.d.) | 14.2  | 21.3                               | 37.7  | 10.5   | 52.8  |  |  |  |
| Certified Upper Limit (mg/kg; reference value + 1 s.d.) | 20.2  | 25.1                               | 43.1  | 12.7   | 61.2  |  |  |  |

Table 3-2: Total recoverable metal concentrations (mg/kg) in Certified Reference Material (CRM; AGAL10) samples, analysed with the November 2015 sediment analytical batch as part of the R J Hill Laboratories' inhouse QC process.

The Certified Upper and Lower Limits are the reference value  $\pm 1$  standard deviation. Yellow shaded values are outside this range (reference value  $\pm 1$  s.d.). Means, as % of certified values, are colour coded: Green within 10%, Amber within 10–20%, Red greater than 20% of the certified concentrations.

|                                                         | 1     | Total Recoverable Metals (<500 μm) |      |        |      |  |  |  |
|---------------------------------------------------------|-------|------------------------------------|------|--------|------|--|--|--|
| Sample                                                  | As    | Cu                                 | Pb   | Hg     | Zn   |  |  |  |
| CRM - Agal 10 - 1                                       | 17.2  | 21.0                               | 40.0 |        | 51.0 |  |  |  |
| CRM - Agal 10 - 2                                       | 18.1  | 24.0                               | 40.0 | 10.7   | 51.0 |  |  |  |
| CRM - Agal 10 - 3                                       | 16.9  | 23.0                               | 39.0 | 10.2   | 52.0 |  |  |  |
| CRM - Agal 10 - 4                                       |       |                                    |      | 10.0   |      |  |  |  |
| mean                                                    | 17.4  | 22.7                               | 39.7 | 10.3   | 51.3 |  |  |  |
| cv (%)                                                  | 3.6   | 6.7                                | 1.5  | 3.5    | 1.1  |  |  |  |
| Mean % of certified value                               | 101.2 | 97.7                               | 98.2 | 88.8   | 90.1 |  |  |  |
|                                                         |       |                                    |      |        |      |  |  |  |
| In-house lower limit (mg/kg; mean - 99% C.L.)           | 16.18 | 19.6                               | 32.5 | 10.023 | 46.1 |  |  |  |
| In-house upper limit (mg/kg; mean + 99% C.L.)           | 23.09 | 26.4                               | 48.4 | 13.61  | 62.7 |  |  |  |
| In-house 99% C.I. (mg/kg)                               | 6.91  | 6.8                                | 15.9 | 3.587  | 16.6 |  |  |  |
| In-house 99% C.I. (+/- % mean)                          | 17.6  | 14.8                               | 19.7 | 15.2   | 15.3 |  |  |  |
|                                                         |       |                                    |      |        |      |  |  |  |
| Certified Reference Value (mg/kg)                       | 17.2  | 23.2                               | 40.4 | 11.6   | 57   |  |  |  |
| Certified Lower Limit (mg/kg; reference value - 1 s.d.) | 14.2  | 21.3                               | 37.7 | 10.5   | 52.8 |  |  |  |
| Certified Upper Limit (mg/kg; reference value + 1 s.d.) | 20.2  | 25.1                               | 43.1 | 12.7   | 61.2 |  |  |  |



Figure 3-1: Certified Reference Material (CRM) quality control data for Total Recoverable Metals in CRM AGAL-10 for RDP and RSCMP samples analysed from 2002 to November 2015. Plots show concentrations, with certified values (green central line) and upper and lower limits (±1 s.d., dashed red lines), and as percentages of the certified values. Note there are two sets of data for 2015, from sampling undertaken in June (Drury Creek survey, Mills 2015) and November (routine RSCMP survey reported here). No RSCMP sampling was carried out in 2014.



Figure 3-2: Trends in total recoverable metals in Certified Reference Material (CRM AGAL-10) for sampling undertaken from 2002 to November 2015. Lines are linear regressions.

Note there are two sets of data for 2015, from sampling undertaken in June (Drury Creek survey, Mills 2015) and November (routine RSCMP survey reported here). No RSCMP sampling was carried out in 2014.

Table 3-3: Trends in metals in CRM (AGAL-10) analysed with RSCMP samples from 2002–2015. Results from Mann Kendal trend test (annual median data used). Note that the trend test uses only the annual RSCMP monitoring data, and does not include the June 2015 sampling data (which was from a survey undertaken in Drury Creek, Mills 2015).

| Metal    | Period       | N  | Median<br>(mg/kg) | Ρ     | Median annual<br>Sen slope<br>(mg/kg/yr) | Sen Slope 5% confidence limit | Sen Slope 95%<br>confidence limit | RSSE (% median value per year) |
|----------|--------------|----|-------------------|-------|------------------------------------------|-------------------------------|-----------------------------------|--------------------------------|
| Total Cu | 2002 to 2015 | 12 | 23.0              | 0.582 | 0.053                                    | -0.08                         | 0.21                              | 0.23                           |
| Total Pb | 2002 to 2015 | 12 | 39.6              | 0.373 | 0.140                                    | -0.10                         | 0.39                              | 0.35                           |
| Total Zn | 2002 to 2015 | 12 | 52.6              | 1.000 | -0.003                                   | -0.30                         | 0.32                              | -0.01                          |

#### 3.2.2 R J Hill Laboratories' in-house reference sediment

Results from the analysis of R J Hill Laboratories' in-house reference sediment QC A5 are presented in Table 3-4. The data show reasonably consistent metal analysis results (CVs 5–13 per cent, n=12), with mean concentrations that were within the laboratory control limits and within 11 per cent of the reference concentrations. Arsenic concentrations were, on average, approximately 11 per cent below reference concentrations, while other metals were within 7 per cent of the reference concentrations. Cu and Zn both showed one individual value outside the lab control limits (99 per cent CLs) – the lab QC report (included in Appendix D) commented on these results, and based on the other sets of QC results, it was concluded that the batch was acceptable.

Table 3-4: Results from analysis of Hill Laboratories' in-house reference sediment QC A5.

Red values are outside the upper and lower control limits (reference value  $\pm 3$  standard deviations; ca. 99% CLs). Means, as % of reference values, are colour shaded: Green within 10%, Amber within 10–20%, Red greater than 20% of the reference concentrations.

|                                               | Total Recoverable Metals (<500 μm) |      |      |      |      |
|-----------------------------------------------|------------------------------------|------|------|------|------|
| Sample                                        | As                                 | Cu   | Pb   | Hg   | Zn   |
| QC A5 Sample 1                                | 103                                | 122  | 125  |      | 820  |
| QC A5 Sample 2                                | 87                                 | 106  | 127  |      | 770  |
| QC A5 Sample 3                                | 101                                | 114  | 115  | 0.39 | 790  |
| QC A5 Sample 4                                | 104                                | 105  | 109  | 0.37 | 760  |
| QC A5 Sample 5                                | 93                                 | 107  | 119  | 0.34 | 810  |
| QC A5 Sample 6                                | 95                                 | 118  | 110  | 0.35 | 780  |
| QC A5 Sample 7                                | 115                                |      |      | 0.35 |      |
| QC A5 Sample 8                                | 109                                |      |      |      |      |
| QC A5 Sample 9                                |                                    |      |      | 0.34 |      |
| QC A5 Sample 10                               |                                    |      |      | 0.35 |      |
| QC A5 Sample 11                               |                                    | 153  |      |      | 960  |
| QC A5 Sample 12                               |                                    | 125  |      |      | 920  |
| Mean                                          | 101                                | 119  | 118  | 0.36 | 826  |
| cv (%)                                        | 8.9                                | 13.3 | 6.4  | 5.1  | 8.9  |
| Mean (% of reference value)                   | 88.9                               | 99.0 | 95.5 | 93.6 | 97.8 |
|                                               |                                    |      |      |      |      |
| In-house lower limit (mg/kg; mean - 99% C.L.) | 77                                 | 100  | 86   | 0.29 | 750  |
| In-house upper limit (mg/kg; mean + 99% C.L.) | 150                                | 140  | 160  | 0.47 | 940  |
| In-house reference value (mg/kg)              | 113.5                              | 120  | 123  | 0.38 | 845  |

#### 3.3 Within-batch data variability

No blind duplicate samples were submitted along with the November 2015 sample batch to the lab. However, seven samples were analysed as blind within-batch duplicates for some or all of the total recoverable metals by R J Hill Laboratories as part of their in-house QA/QC regime. Results are given in the lab QC report (Appendix D) and are tabulated in Table 3-5.

The relative percentage differences (RPDs) between duplicates ranged from 0–10 per cent, indicating good agreement. All duplicate results were within the USEPA (2010) Measurement Quality Objective (MQO) limit for acceptable agreement between within-batch replicates (a 30 per cent difference).

Table 3-5: Within-batch variation for total recoverable metals analysed by R J Hill Laboratories as blind duplicates.

Differences between duplicates (expressed as relative percentage difference; RPD) are colour coded: Green <15%, Amber 15–30%, Red >30%.

|                    |     | Total Recoverable Metals (<500 μm) |       |       |        |       |
|--------------------|-----|------------------------------------|-------|-------|--------|-------|
| Site               | Rep | As                                 | Cu    | Pb    | Hg     | Zn    |
| 2562.72 - Rep -1   | 1   |                                    |       | 22.30 |        |       |
| 2562.72 - Rep -2   | 2   |                                    |       | 20.6  |        |       |
| difference (mg/kg) |     |                                    |       | -1.70 |        |       |
| RPD (%)            |     |                                    |       | 7.9   |        |       |
|                    |     |                                    |       |       |        |       |
| 2562.68 - Rep -1   | 1   |                                    | 21.40 | 28.70 |        | 192.0 |
| 2562.68 - Rep -2   | 2   |                                    | 20.50 | 27.40 |        | 181.0 |
| difference (mg/kg) |     |                                    | -0.90 | -1.30 |        | -11.0 |
| RPD (%)            |     |                                    | 4.3   | 4.6   |        | 5.9   |
|                    |     |                                    |       |       |        |       |
| 2562.47 - Rep -1   | 1   | 10.00                              |       |       |        |       |
| 2562.47 - Rep -2   | 2   | 9.56                               |       |       |        |       |
| difference (mg/kg) |     | -0.44                              |       |       |        |       |
| RPD (%)            |     | 4.5                                |       |       |        |       |
|                    |     |                                    |       |       |        |       |
| 2562.61 - Rep -1   | 1   |                                    |       |       | 0.147  |       |
| 2562.61 - Rep -2   | 2   |                                    |       |       | 0.133  |       |
| difference (mg/kg) |     |                                    |       |       | -0.014 |       |
| RPD (%)            |     |                                    |       |       | 10.0   |       |
|                    |     |                                    |       |       |        |       |
| 2562.33 - Rep -1   | 1   | 11.70                              | 26.10 | 29.30 | 0.134  | 132.0 |
| 2562.33 - Rep -2   | 2   | 12.00                              | 26.50 | 29.20 | 0.133  | 132.0 |
| difference (mg/kg) |     | 0.30                               | 0.40  | -0.10 | -0.001 | 0.0   |
| RPD (%)            |     | 2.5                                | 1.5   | 0.3   | 0.7    | 0.0   |
|                    |     |                                    |       |       |        |       |
| 2562.73 - Rep -1   | 1   |                                    | 17.50 | 23.10 | 0.134  | 153.0 |
| 2562.73 - Rep -2   | 2   |                                    | 17.40 | 23.20 | 0.131  | 149.0 |
| difference (mg/kg) |     |                                    | -0.10 | 0.10  | -0.003 | -4.0  |
| RPD (%)            |     |                                    | 0.6   | 0.4   | 2.3    | 2.6   |
|                    |     |                                    |       |       |        |       |
| 2562.21 - Rep -1   | 1   | 10.10                              | 13.20 | 17.30 | 0.058  | 101.0 |
| 2562.21 - Rep -2   | 2   | 10.10                              | 13.20 | 17.30 | 0.053  | 101.0 |
| difference (mg/kg) |     | 0.00                               | 0.00  | 0.00  | -0.005 | 0.0   |
| RPD (%)            |     | 0.0                                | 0.0   | 0.0   | 8.3    | 0.0   |

#### 3.4 Bulk reference sediment results

Bulk Reference Sediment (BRS) sample analysis consisted of:

- Five samples from each of the sandy Meola Outer and muddy Middlemore sites, in freeze-dried forms, were analysed for metals. The results for the metal analyses are summarised in section 3.4.1; and
- Three samples (frozen form) from each of the Middlemore and Meola Outer sites were analysed for particle size distribution (PSD). The results for PSD are summarised in section 3.4.23.4.2.

Single Site Reports (SSRs) for the BRS samples have been updated with the 2015 results and provided separately to the Auckland Council.

#### 3.4.1 Metals

The BRS total recoverable metals results from the November 2015 sample batch are summarised in Table 3-6. A comparison of the November 2015 BRS results with those obtained in earlier RSCMP monitoring rounds during November 2011–2013, and June 2015 is summarised in Table 3-7 and Table 3-8, and shown graphically in Figure 3-3 and Figure 3-4.

The within-batch variability (CVs, N = 5) was 1.8–13.8 per cent. The variability for total recoverable Hg in sediments in both BRS sediments was markedly higher than for other analytes. For the primary monitoring metal contaminants (Cu, Pb and Zn), CVs for total recoverable metals ranged from 1.9 to 3.5 per cent. These results were similar to previous years.



Figure 3-3: Total recoverable Cu, Pb, and Zn results for freeze-dried (FD) bulk reference sediments (BRS) analysed with RSCMP samples taken in November 2011, 2012, 2013, June 2015, and November 2015. Bars are means ±95% confidence intervals in the means (N=6 in 2011 and 2012, N=3 in 2013 and June 2015 and N=5 in November 2015).



Figure 3-4: Total recoverable As and Hg results for freeze-dried (FD) bulk reference sediments (BRS) analysed with RSCMP samples taken in November 2011, 2012, 2013, June 2015, and November 2015. Bars are means ±95% confidence intervals in the means (N=6 in 2011 and 2012, N=3 in 2013 and June 2015 and N=5 in November 2015).

|             |           |       | Total Recoverable Metals (mg/kg, <500 μm) |      |       |      |        |  |  |
|-------------|-----------|-------|-------------------------------------------|------|-------|------|--------|--|--|
| BRS Sample  | Replicate | Mud % | Cu                                        | Pb   | Zn    | As   | Hg     |  |  |
| Middlemore  | 1         | 69.4  | 29.0                                      | 35.5 | 224.6 | 7.98 | 0.173  |  |  |
|             | 2         | 65.8  | 27.8                                      | 33.7 | 217.5 | 7.62 | 0.138  |  |  |
|             | 3         | 65.2  | 27.3                                      | 33.6 | 214.8 | 7.85 | 0.151  |  |  |
|             | 4         |       | 28.5                                      | 35.0 | 224.1 | 7.92 | 0.159  |  |  |
|             | 5         |       | 27.8                                      | 33.9 | 219.0 | 7.80 | 0.146  |  |  |
|             | Mean      | 66.8  | 28.1                                      | 34.3 | 220.0 | 7.83 | 0.154  |  |  |
|             | stdev     | 2.31  | 0.69                                      | 0.83 | 4.23  | 0.14 | 0.013  |  |  |
|             | CV %      | 3.5   | 2.4                                       | 2.4  | 1.9   | 1.8  | 8.6    |  |  |
| Meola Outer | 1         | 2.82  | 2.96                                      | 8.78 | 38.5  | 2.41 | 0.0344 |  |  |
|             | 2         | 2.87  | 2.89                                      | 9.08 | 40.6  | 2.62 | 0.0281 |  |  |
|             | 3         | 3.01  | 2.78                                      | 8.85 | 37.0  | 2.38 | 0.0251 |  |  |
|             | 4         |       | 2.82                                      | 8.65 | 38.0  | 2.42 | 0.0258 |  |  |
|             | 5         |       | 3.02                                      | 9.00 | 39.2  | 2.61 | 0.0258 |  |  |
|             | Mean      | 2.90  | 2.90                                      | 8.9  | 38.6  | 2.49 | 0.0278 |  |  |
|             | stdev     | 0.10  | 0.10                                      | 0.17 | 1.36  | 0.12 | 0.0038 |  |  |
|             | CV %      | 3.5   | 3.4                                       | 1.9  | 3.5   | 4.6  | 13.8   |  |  |

Table 3-6: Bulk Reference Sediment (BRS) results from the November 2015 sampling batch. Metal analysis results are from freeze-dried BRS samples (mg/kg freeze dry weight, <500µm fraction), N=5. Mud content data are from frozen BRS samples (% <63µm, oven dry weight, N=3). Table 3-7: Comparison of median metal concentrations (mg/kg dry weight) and mud content (% <63µm) in Bulk Reference Sediment (BRS) analysed with the November 2015 sample batch with results obtained between November 2011 and June 2015: Concentration data.

Data points are medians, with sample numbers varying between years and analytes. For Cu, Pb, and Zn, N=6 for 2011 and 2012, N=3 for 2013 and June 2015, and N=5 for November 2015. For As and Hg, N=1 for 2011, N=6 for 2012, N=3 for 2013 and June 2015, and N=5 for November 2015. For mud content, N=3 in each year.

The shading colour reflects the difference between the November 2015 and earlier years' results (medians) – Green indicates no significant difference, blue indicates values lower than in November 2015, and red shaded values are higher than the November 2015 results. Significance determined by Kruskal Wallis test (p<0.05). No shading is given for Total As and Hg for 2011 because only a single analysis was undertaken for these elements in 2011, and therefore the significance of differences between 2011 and 2015 for these analytes could not be determined.

|             |               | Chemistry Processing |              |       |      | Total Metals (mg/kg, <500 um) |       |      |       |
|-------------|---------------|----------------------|--------------|-------|------|-------------------------------|-------|------|-------|
| BRS Sample  | Sampling Date | Lab                  | Method       | % Mud | Cu   | Pb                            | Zn    | As   | Hg    |
| Meola Outer | Nov-2011      | Hills                | Air dried    | 3.03  | 2.85 | 8.35                          | 37.5  | 2.50 | 0.033 |
|             | Nov-2012      | Hills                | Air dried    | 3.07  | 3.12 | 9.14                          | 42.2  | 2.31 | 0.031 |
|             | Nov-2013      | NIWA                 | Freeze dried | 2.95  | 2.90 | 8.80                          | 40.0  | 2.60 | 0.033 |
|             | Jun-2015      | NIWA                 | Freeze dried | 2.79  | 3.26 | 10.06                         | 42.2  | 3.41 | 0.040 |
|             | Nov-2015      | NIWA                 | Freeze dried | 2.87  | 2.89 | 8.85                          | 38.5  | 2.42 | 0.026 |
| Middlemore  | Nov-2011      | Hills                | Air dried    | 66.9  | 27.4 | 31.6                          | 204.1 | 9.40 | 0.172 |
|             | Nov-2012      | Hills                | Air dried    | 69.2  | 31.1 | 35.2                          | 234.7 | 8.06 | 0.164 |
|             | Nov-2013      | NIWA                 | Freeze dried | 68.3  | 29.0 | 35.0                          | 220.0 | 9.50 | 0.184 |
|             | Jun-2015      | NIWA                 | Freeze dried | 66.8  | 32.6 | 39.2                          | 234.8 | 10.3 | 0.190 |
|             | Nov-2015      | NIWA                 | Freeze dried | 65.8  | 27.8 | 33.9                          | 219.0 | 7.85 | 0.151 |

Table 3-8: Comparison of metal concentrations and mud content in Bulk Reference Sediment (BRS) analysed with the November 2015 sampling batch with results obtained between November 2011 and June 2015: Relative Percentage Differences (RPDs) between annual medians.

Data points are Relative Percentage Differences (RPDs) between the November 2015 median concentrations and the medians for each of the 2011 to June 2015 data. Sample numbers vary between years and analytes. For Cu, Pb, and Zn, N=6 for 2011 and 2012, N=3 for 2013 and June 2015, and N=5 for November 2015. For As and Hg, N=1 for 2011, N=6 for 2012, N=3 for 2013 and June 2015, and N=5 for November 2015. For mud content, N=3 in each year.

The shading colour reflects the difference between the November 2015 and earlier years' results – Green indicates no significant difference, blue indicates values lower than in 2015, and red shaded are higher than the 2015 results (Kruskal Wallis test, p<0.05). Unshaded values where no significance test could be undertaken (see Table 3-7). The bolded red values indicate RPDs > $\pm$ 30%, which is the maximum allowable RPD between duplicates recommended by USEPA (2010).

|             |               | Chemistry Processing |              |       | Total Metals (<500 um) |      |      |      |      |
|-------------|---------------|----------------------|--------------|-------|------------------------|------|------|------|------|
| BRS Sample  | Sampling Date | Lab                  | Method       | % Mud | Cu                     | Pb   | Zn   | As   | Hg   |
| Meola Outer | Nov-2011      | Hills                | Air dried    | 5.2   | -1.4                   | -5.8 | -2.7 | 3.3  | 24.6 |
|             | Nov-2012      | Hills                | Air dried    | 6.6   | 7.5                    | 3.3  | 9.1  | -4.5 | 16.9 |
|             | Nov-2013      | NIWA                 | Freeze dried | 2.6   | 0.3                    | -0.5 | 3.7  | 7.2  | 24.6 |
|             | Jun-2015      | NIWA                 | Freeze dried | -2.8  | 11.9                   | 12.8 | 9.1  | 33.9 | 44.4 |
|             | Nov-2015      | NIWA                 | Freeze dried | 0.0   | 0.0                    | 0.0  | 0.0  | 0.0  | 0.0  |
| Middlemore  | Nov-2011      | Hills                | Air dried    | 1.7   | -1.4                   | -7.0 | -7.1 | 18.0 | 12.9 |
|             | Nov-2012      | Hills                | Air dried    | 5.0   | 11.3                   | 3.7  | 6.9  | 2.6  | 8.0  |
|             | Nov-2013      | NIWA                 | Freeze dried | 3.7   | 4.2                    | 3.1  | 0.4  | 19.0 | 19.6 |
|             | Jun-2015      | NIWA                 | Freeze dried | 1.5   | 15.9                   | 14.3 | 7.0  | 26.7 | 22.7 |
|             | Nov-2015      | NIWA                 | Freeze dried | 0.0   | 0.0                    | 0.0  | 0.0  | 0.0  | 0.0  |

Significant differences (as determined by Kruskal Wallis test, p<0.05) between the median concentrations obtained in November 2015 and the previous years were recorded for many analyses (Table 3-7). Almost all the June 2015 results were higher than those obtained in November 2015.

The magnitude of the differences in median concentrations between November 2015 and previous years was generally <20 per cent, and was <30 per cent (a recommended maximum RPD for duplicate results; USEPA 2010) for all analytes except for As and Hg in the June 2015 sampling batch, which were 34 per cent and 44 per cent higher than the results obtained in November 2015 (Table 3-8).

No significant trends over time were measured from the BRS data from the November 2011, 2012, 2013, and 2015 samples batches (Table 3-9).

Table 3-9: Trends (Sen Slopes, given as % of median concentrations per year) in metal and mud content from BRS analyses conducted using samples taken in November 2011, 2012, 2013, and 2015. Results from Mann Kendall trend test using "annual median" option, where N = 1 (the median) for each year, total N=4 (2011, 2012, 2013, and 2015). No trends were significant (Mann Kendall test, p<0.05).

|             |       | Total Metals (<500 μm) |      |       |       |      |  |  |
|-------------|-------|------------------------|------|-------|-------|------|--|--|
| BRS Sample  | % Mud | Cu                     | Pb   | Zn    | As    | Hg   |  |  |
| Meola Outer | -1.30 | 0.10                   | 0.84 | -0.60 | 0.21  | -6.1 |  |  |
| Middlemore  | -0.85 | -0.88                  | 0.54 | 0.74  | -3.20 | -3.2 |  |  |

#### 3.4.2 Particle size distribution

A summary of the November 2015 particle size distribution (PSD) results is given in Table 3-10, and a comparison of 2011–2015 data is shown in Table 3-11 and Figure 3-5.

The BRS results indicate that the sieve/pipette method is giving reproducible "mud content" (% <63µm) results. Variability remains relatively low, with CVs of 3.5 per cent for both the muddy (Middlemore) and sandy (Meola Outer) BRS. The variability in mud content for the Middlemore BRS was slightly higher in November 2015 than in previous years (Figure 3-5).

Comparison of the November 2015 sample batch results with those from 2011 to June 2015 showed:

- For Middlemore: Mud content (silt + clay fractions) was relatively consistent. The means were 66.7 per cent in 2011, 69.1 per cent in 2012, 68.1 per cent in 2013, 66.1 per cent in June 2015, and 66.8 per cent in November 2015. Substantial differences in the proportions of silt and clay fractions were measured between 2011 and 2012, but these differences have decreased markedly between 2013 and November 2015 (see the top plot in Figure 3-5).
- For Meola Outer: Consistent results were obtained between years, for the dominant fine sand fraction and also for the minor size fractions (Table 3-11, Figure 3-5).

The 2011 to November 2015 data showed trends of -1.3 per cent of the median per year for the sandy Meola Outer BRS and -0.85 per cent per year for the higher mud content Middlemore BRS. Neither of these trends were statistically significant (Mann Kendall test, p>0.05).

Overall, the results obtained to date indicate the sieve/pipette PSD method is providing reliable mud content data with low variability and good year-to-year reproducibility. Continued use of this method is therefore recommended.

| Texture Class       | Gravel   | Coarse Sand | Medium Sand | Fine Sand   | Silt        | Clay     | % of tota | sediment | % of <500um fraction |
|---------------------|----------|-------------|-------------|-------------|-------------|----------|-----------|----------|----------------------|
| Particle size range | >2000 µm | 500-2000 μm | 250-500 μm  | 62.5-250 μm | 3.9-62.5 μm | 0-3.9 μm | <63 um    | <500 um  | <63 um               |
| Middlemore:         |          |             |             |             |             |          |           |          |                      |
| Mid PS 18           | 0.00     | 0.08        | 0.60        | 29.87       | 50.35       | 19.10    | 69.45     | 99.92    | 69.51                |
| Mid PS 59           | 0.00     | 0.15        | 0.56        | 33.50       | 42.63       | 23.17    | 65.79     | 99.85    | 65.89                |
| Mid PS 90           | 0.00     | 0.14        | 0.71        | 33.97       | 42.18       | 23.01    | 65.18     | 99.86    | 65.27                |
| mean                | 0.00     | 0.12        | 0.62        | 32.45       | 45.05       | 21.76    | 66.81     | 99.88    | 66.89                |
| s.d.                | -        | 0.03        | 0.08        | 2.24        | 4.59        | 2.30     | 2.31      | 0.03     | 2.29                 |
| c.v. (%)            | -        | 28.25       | 12.07       | 6.91        | 10.20       | 10.59    | 3.45      | 0.03     | 3.42                 |
| Meola Outer:        |          |             |             |             |             |          |           |          |                      |
| MO PS 15            | 2.74     | 0.29        | 1.03        | 93.12       | 0.28        | 2.54     | 2.82      | 96.97    | 2.91                 |
| MO PS 30            | 0.16     | 0.27        | 0.98        | 95.72       | 0.96        | 1.91     | 2.87      | 99.57    | 2.88                 |
| MO PS 71            | 0.53     | 0.23        | 1.02        | 95.20       | 0.75        | 2.26     | 3.01      | 99.24    | 3.04                 |
| mean                | 1.14     | 0.27        | 1.01        | 94.68       | 0.66        | 2.24     | 2.90      | 98.59    | 2.94                 |
| s.d.                | 1.40     | 0.03        | 0.03        | 1.37        | 0.35        | 0.31     | 0.10      | 1.41     | 0.08                 |
| c.v. (%)            | 122.18   | 10.51       | 2.82        | 1.45        | 52.13       | 13.98    | 3.47      | 1.43     | 2.81                 |

Table 3-10: Summary of particle size distribution (PSD) results for Bulk Reference Sediments (BRS) obtained with the November 2015 sampling batch.

Table 3-11: Summary of particle size distribution (PSD) results for Bulk Reference Sediment (BRS) obtained with the November 2011, 2012, and 2013, June 2015, and November 2015 sampling batches.

|                   |                      |        | Middlemore: Mud Meola Outer: Sand |        |        |        | and    |        |        |        |        |
|-------------------|----------------------|--------|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Class             | Particle size range  | Nov-11 | Nov-12                            | Nov-13 | Jun-15 | Nov-15 | Nov-11 | Nov-12 | Nov-13 | Jun-15 | Nov-15 |
| Gravel            | >2000 µm             | 0.00   | 0.00                              | 0.03   | 0.00   | 0.00   | 0.70   | 0.72   | 1.01   | 0.82   | 1.14   |
| Coarse Sand       | 500-2000 µm          | 0.15   | 0.11                              | 0.17   | 0.06   | 0.12   | 0.33   | 0.31   | 0.26   | 0.27   | 0.27   |
| Medium Sand       | 250-500 µm           | 0.74   | 0.52                              | 0.59   | 0.53   | 0.62   | 1.13   | 0.94   | 0.94   | 0.95   | 1.01   |
| Fine Sand         | 62.5-250 µm          | 32.45  | 30.29                             | 31.12  | 33.32  | 32.45  | 94.83  | 94.94  | 94.91  | 95.17  | 94.68  |
| Silt              | 3.9-62.5 µm          | 57.31  | 50.50                             | 46.08  | 45.89  | 45.05  | 1.08   | 0.91   | 1.39   | 0.82   | 0.66   |
| Clay              | <3.9 µm              | 9.35   | 18.58                             | 22.00  | 20.21  | 21.76  | 1.93   | 2.18   | 1.48   | 1.96   | 2.24   |
| "Mud" - % of tota | al sediment <63 um   | 66.66  | 69.09                             | 68.09  | 66.10  | 66.81  | 3.01   | 3.09   | 2.87   | 2.78   | 2.90   |
| "Mud" - % of <50  | 00um fraction <63 um | 66.76  | 69.16                             | 68.23  | 66.14  | 66.89  | 3.04   | 3.12   | 2.91   | 2.82   | 2.94   |



Figure 3-5: Particle size distribution (PSD) results for frozen bulk reference sediments (BRS) analysed with RSCMP samples taken in November 2011, 2012, and 2013, June 2015, and November 2015. Bars are means  $\pm$ 95% confidence intervals in the means (N=3 in each year). The top plots show data for each particle size range, while the middle plots combine the silt and clay fractions in to a single "mud" fraction (% <63µm). The bottom plots show changes in mud content (% <63µm) over time. Size fractions: gravel (>2 mm), coarse sand (0.5–2 mm), medium sand (0.25–0.5 mm), fine sand (0.063–0.25 mm), silt (3.9–63µm), clay (<3.9µm).

#### 3.5 Data quality summary

Table 3-12 summarises the QA information obtained for the November 2015 sampling round analyses.

The quality assurance data described above indicate that the total recoverable metals data were of acceptable quality, which was generally consistent with previous RDP/RSCMP results. BRS results showed higher between-year variability at times for As and Hg than for Cu, Pb, and Zn, and therefore the CRM and BRS data for As and Hg should be checked to assess the reliability and meaningfulness of future trends for As and Hg. Note that extractable metals (in the <63 $\mu$ m fraction) were not analysed in the November 2015 samples.

The PSD data from the BRS analyses showed low variability and good comparability with the results from the previous BRS batches (November 2011 to June 2015). Overall, based on the BRS data collected to date, the PSD data are deemed to be reliable.

Overall, the November 2015 monitoring data for total recoverable metals and PSD were similar in quality to those obtained in previous years and are considered acceptable for use in the RSCMP status and trend assessment programme.

#### Table 3-12: Summary of analytical quality assurance results for the November 2015 sample batch

| QAMeasure                          | Target                                                                                  | Pass Note Fail                                                         | Comments                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blanks                             | All values less than detection limits                                                   | Pass                                                                   | All < detection limits.                                                                                                                                                                                                                                                                                                                                              |
| Spike Recoveries                   | All values within lab QC limits (preferably in 90-110% range)                           | N/A                                                                    | No spike recoveries measured.                                                                                                                                                                                                                                                                                                                                        |
| Within Batch blind duplicates      | 95% of RPDs <30%                                                                        | Pass                                                                   | <u>Metals</u> : 7 samples analysed in duplicate by Hill labs in-house QA. All<br>RPDs <10%. Overall, good WB agreement.                                                                                                                                                                                                                                              |
|                                    |                                                                                         | N/A                                                                    | Particle size: No WB blind duplicates analysed                                                                                                                                                                                                                                                                                                                       |
| Between Batch blind<br>duplicates  | 95% of RPDs <30%                                                                        | N/A                                                                    | No between batch duplicate samples analysed.                                                                                                                                                                                                                                                                                                                         |
| Certified Reference Material       | Accuracy: 95% of results within certified range.                                        | Pass                                                                   | Three CRM samples analysed as unknowns for total recoverable metals.<br>Means within 8% of certified values for total Cu, Pb, As & Hg. Total Zn<br>12% low. Individual samples within 10% of reference values, except one<br>Hg result (11% low). Variability low - CVs 1.7-3.5%.                                                                                    |
|                                    | <u>Temporal stability:</u> Trends over<br>time <1% of median concentration<br>per year. | Pass                                                                   | Trends over time for 2002 to Nov 2015 small and not significant: Cu 0.23% per yr, Pb 0.35% per yr, Zn -0.01% per yr).                                                                                                                                                                                                                                                |
| Lab In-House Reference<br>Material | Accuracy: 95% of results within lab<br>control limits                                   | Pass                                                                   | 12 samples of "QC A5" analysed as unknowns for total metals. Variability for total metals (CVs) 5-13%. Mean concentrations within 11% of reference. Total Cu and Zn both showed one value outside the lab control limits – the lab QA report commented on these results, and based on the other set of QCA5 sample results concluded that the batch were acceptable. |
| Bulk Reference Sediments:          |                                                                                         |                                                                        |                                                                                                                                                                                                                                                                                                                                                                      |
| Total Recoverable Metals           | <u>Within-year variability:</u> 95% of WB<br>CVs <30%.                                  | Pass                                                                   | Within-year variability meets targets (CVs 2-14% for all metals).                                                                                                                                                                                                                                                                                                    |
|                                    | Between-year variability: 95% of between-year RPDs <30%.                                | Pass (Cu Pb Zn)<br>Note (As, Hg)                                       | November 2015 results were within <30% of 2011 to June 2015 results, except for As & Hg (which were 34% and 44% higher in the June 2015 samples). All Cu, Pb, and Zn results within 16% of the Nov 2015 medians. As & Hg more variable between years (up to 44% difference cf Nov 2015).                                                                             |
|                                    | <u>Temporal stability:</u> Trends over<br>time <2% of median concentration<br>per year. | Pass                                                                   | Trends over time for Nov 2011 to Nov 2015 were -0.9 to +0.8 % per year for total Cu, Pb, and Zn. None of these trends were statistically significant (MK test, $p$ >0.05, N=4).                                                                                                                                                                                      |
| Particle Size Distribution         | Within-year variability: 95% of WB CVs <30%.                                            | Pass                                                                   | % mud results had low variability: CV of 3.5% for Middlemore and Meola<br>Outer BRS (N=3).                                                                                                                                                                                                                                                                           |
|                                    | Between-year variability: 95% of between-year RPDs <30%.                                | Pass                                                                   | 2015 results within 6.6% (Meola Outer) and 5.0% (Middlemore) of any of the previous median results for 2011 to June 2015.                                                                                                                                                                                                                                            |
|                                    | <u>Temporal stability:</u> Trends over<br>time <2% of median concentration<br>per year. | Pass                                                                   | Trends for % mud for 2011 to Nov 2015 in Meola Outer were -1.3% per<br>year, and for Middlemore -0.9% per year. Trends were not statistically<br>significant (MK test, p>0.05, N=4).                                                                                                                                                                                 |
| OVERALL ASSESSMENT                 |                                                                                         | Total metals<br>Cu, Pb, Zn: OK<br>As & Hg: on-going checks<br>required | Total recoverable Cu, Pb, and Zn OK. As & Hg data more variable - use<br>CRM and BRS results to check validility of temporal trends.                                                                                                                                                                                                                                 |
|                                    |                                                                                         | PSD: OK                                                                | PSD data look good. Low variability, temporal trends small.                                                                                                                                                                                                                                                                                                          |

## 4.0 References

ARC (2004). *Blueprint for monitoring urban receiving environments*. ARC technical publication, TP168, August 2004

Mills, G N (2014). *Marine Sediment Contaminant Monitoring: 2013 data report*. Report prepared by Diffuse Sources Ltd for Auckland Council. Auckland Council technical report, TR2014/039. December 2014

Mills, G N (2015). *Marine Sediment Contaminant Monitoring: Drury Creek, June 2015* Prepared by Diffuse Sources Ltd for Auckland Council. Auckland Council technical report, TR2016/024

USEPA (2010). *National Coastal Condition Assessment Quality Assurance Project Plan.* United States Environmental Protection Agency, Office of Water, Office of Wetlands, Oceans and Watersheds. Washington, D.C. EPA/841-R-09-004. July 2010

## Appendix A Sediment contaminant data

Metal analyses data for November 2015 monitoring. Concentrations in mg/kg freeze-dry weight (<500µm fraction). QA sample data are included for Certified Reference Material (CRM AGAL10) and Bulk Reference Sediments (BRS).

|                   |           | Total Recoverable metals, mg/kg freeze dried wt, <500 μm |      |     |      |        |  |
|-------------------|-----------|----------------------------------------------------------|------|-----|------|--------|--|
| Sample            | Replicate | Cu                                                       | Pb   | Zn  | As   | Hg     |  |
| Benghazi          | 1         | 10.2                                                     | 14.8 | 83  | 6.3  | 0.067  |  |
| Benghazi          | 2         | 9.8                                                      | 14.5 | 77  | 5.9  | 0.067  |  |
| Benghazi          | 3         | 10.3                                                     | 15.4 | 88  | 6.1  | 0.076  |  |
| Benghazi          | 4         | 10.5                                                     | 15.5 | 95  | 6.3  | 0.060  |  |
| Benghazi          | 5         | 10.3                                                     | 15.3 | 81  | 6.1  | 0.060  |  |
| Bowden            | 1         | 22                                                       | 29   | 199 | 11.0 | 0.146  |  |
| Bowden            | 2         | 21                                                       | 29   | 192 | 10.0 | 0.147  |  |
| Bowden            | 3         | 23                                                       | 29   | 192 | 9.1  | 0.166  |  |
| Bowden            | 4         | 22                                                       | 29   | 190 | 8.6  | 0.144  |  |
| Bowden            | 5         | 22                                                       | 31   | 199 | 9.0  | 0.159  |  |
| Chelsea           | 1         | 6.0                                                      | 12.7 | 47  | 6.3  | 0.045  |  |
| Chelsea           | 2         | 6.0                                                      | 13.0 | 49  | 7.1  | 0.045  |  |
| Chelsea           | 3         | 6.0                                                      | 12.7 | 46  | 6.6  | 0.062  |  |
| Chelsea           | 4         | 6.2                                                      | 12.2 | 44  | 5.8  | 0.044  |  |
| Chelsea           | 5         | 6.7                                                      | 12.1 | 46  | 6.0  | 0.056  |  |
| Coxs              | 1         | 6.2                                                      | 14.8 | 80  | 2.9  | 0.054  |  |
| Coxs              | 2         | 6.1                                                      | 14.2 | 76  | 2.8  | 0.059  |  |
| Coxs              | 3         | 5.9                                                      | 14.0 | 75  | 3.0  | 0.050  |  |
| Coxs              | 4         | 6.0                                                      | 13.7 | 75  | 2.8  | 0.047  |  |
| Coxs              | 5         | 6.2                                                      | 14.0 | 78  | 2.9  | 0.054  |  |
| Harania           | 1         | 16.1                                                     | 22   | 120 | 12.0 | 0.062  |  |
| Harania           | 2         | 18.0                                                     | 22   | 138 | 12.0 | 0.058  |  |
| Harania           | 3         | 18.1                                                     | 22   | 138 | 12.0 | 0.060  |  |
| Harania           | 4         | 18.5                                                     | 22   | 143 | 12.4 | 0.052  |  |
| Harania           | 5         | 19.0                                                     | 22   | 144 | 12.3 | 0.058  |  |
| Henderson Lower   | 1         | 26                                                       | 29   | 133 | 11.0 | 0.127  |  |
| Henderson Lower   | 2         | 32                                                       | 28   | 157 | 12.0 | 0.121  |  |
| Henderson Lower   | 3         | 27                                                       | 29   | 135 | 10.7 | 0.137  |  |
| Henderson Lower   | 4         | 28                                                       | 30   | 137 | 10.6 | 0.150  |  |
| Henderson Lower   | 5         | 26                                                       | 29   | 132 | 11.7 | 0.134  |  |
| Pahurehure Middle | 1         | 2.2                                                      | 6.0  | 33  | 10.3 | < 0.01 |  |
| Pahurehure Middle | 2         | 2.0                                                      | 5.8  | 30  | 8.1  | < 0.01 |  |
| Pahurehure Middle | 3         | 2.1                                                      | 5.7  | 31  | 8.5  | < 0.01 |  |
| Pahurehure Middle | 4         | 1.9                                                      | 5.8  | 32  | 10.2 | 0.019  |  |
| Pahurehure Middle | 5         | 2.3                                                      | 5.9  | 34  | 9.5  | 0.016  |  |
| Pahurehure Upper  | 1         | 7.0                                                      | 10.7 | 70  | 11.3 | 0.028  |  |
| Pahurehure Upper  | 2         | 7.0                                                      | 10.8 | 70  | 10.8 | 0.044  |  |
| Pahurehure Upper  | 3         | 7.0                                                      | 10.6 | 68  | 11.0 | 0.029  |  |
| Pahurehure Upper  | 4         | 7.2                                                      | 10.7 | 70  | 11.3 | 0.037  |  |
| Pahurehure Upper  | 5         | 7.3                                                      | 11.6 | 72  | 11.4 | 0.031  |  |

|                 |           | Total Recoverable metals, mg/kg freeze dried wt, <500 μm |      |     |      |        |  |
|-----------------|-----------|----------------------------------------------------------|------|-----|------|--------|--|
| Sample          | Replicate | Cu                                                       | Pb   | Zn  | As   | Hg     |  |
| Papakura Lower  | 1         | 7.9                                                      | 12.1 | 71  | 11.6 | 0.040  |  |
| Papakura Lower  | 2         | 7.3                                                      | 11.5 | 67  | 11.0 | 0.035  |  |
| Papakura Lower  | 3         | 7.8                                                      | 11.8 | 72  | 11.0 | 0.035  |  |
| Papakura Lower  | 4         | 9.0                                                      | 11.5 | 67  | 10.6 | 0.035  |  |
| Papakura Lower  | 5         | 9.1                                                      | 12.2 | 68  | 11.6 | 0.030  |  |
| Princes         | 1         | 16.0                                                     | 24   | 147 | 8.0  | 0.112  |  |
| Princes         | 2         | 18.4                                                     | 24   | 160 | 8.2  | 0.145  |  |
| Princes         | 3         | 16.8                                                     | 22   | 146 | 7.3  | 0.137  |  |
| Princes         | 4         | 17.5                                                     | 23   | 153 | 6.9  | 0.134  |  |
| Princes         | 5         | 16.8                                                     | 23   | 148 | 7.5  | 0.124  |  |
| Shoal Hillcrest | 1         | 15.7                                                     | 27   | 97  | 8.0  | 0.174  |  |
| Shoal Hillcrest | 2         | 16.1                                                     | 29   | 100 | 8.1  | 0.175  |  |
| Shoal Hillcrest | 3         | 15.5                                                     | 27   | 94  | 8.5  | 0.161  |  |
| Shoal Hillcrest | 4         | 15.2                                                     | 26   | 91  | 8.1  | 0.155  |  |
| Shoal Hillcrest | 5         | 15.6                                                     | 27   | 92  | 8.5  | 0.175  |  |
| Tararata        | 1         | 13.4                                                     | 17.5 | 103 | 9.7  | 0.053  |  |
| Tararata        | 2         | 13.4                                                     | 17.6 | 102 | 9.8  | 0.050  |  |
| Tararata        | 3         | 14.1                                                     | 18.8 | 110 | 10.0 | 0.049  |  |
| Tararata        | 4         | 13.2                                                     | 17.3 | 101 | 10.1 | 0.058  |  |
| Tararata        | 5         | 13.3                                                     | 17.7 | 103 | 10.0 | 0.059  |  |
| Whau Entrance   | 1         | 4.4                                                      | 8.2  | 37  | 2.6  | 0.040  |  |
| Whau Entrance   | 2         | 4.3                                                      | 8.3  | 37  | 2.6  | 0.034  |  |
| Whau Entrance   | 3         | 4.4                                                      | 8.4  | 40  | 2.7  | 0.033  |  |
| Whau Entrance   | 4         | 4.2                                                      | 8.2  | 38  | 2.6  | 0.030  |  |
| Whau Entrance   | 5         | 4.1                                                      | 8.1  | 36  | 2.5  | 0.031  |  |
| Hillsborough    | 1         | 7.7                                                      | 12.1 | 68  | 7.0  | 0.031  |  |
| Hillsborough    | 2         | 7.4                                                      | 11.4 | 65  | 7.2  | 0.033  |  |
| Hillsborough    | 3         | 7.4                                                      | 10.8 | 63  | 7.1  | 0.025  |  |
| Hillsborough    | 4         | 7.2                                                      | 10.7 | 63  | 7.2  | 0.033  |  |
| Hillsborough    | 5         | 7.1                                                      | 10.8 | 63  | 7.2  | 0.034  |  |
| Mill Bay        | 1         | 4.3                                                      | 9.1  | 55  | 10.0 | < 0.01 |  |
| Mill Bay        | 2         | 4.2                                                      | 8.3  | 51  | 10.8 | < 0.01 |  |
| Mill Bay        | 3         | 4.0                                                      | 8.6  | 51  | 10.3 | < 0.01 |  |
| Mill Bay        | 4         | 4.0                                                      | 8.6  | 51  | 13.6 | < 0.01 |  |
| Mill Bay        | 5         | 3.6                                                      | 8.2  | 49  | 8.9  | 0.011  |  |
| Rarawaru        | 1         | 15.5                                                     | 19.5 | 73  | 7.5  | 0.128  |  |
| Rarawaru        | 2         | 15.9                                                     | 19.6 | 76  | 7.7  | 0.127  |  |
| Rarawaru        | 3         | 15.7                                                     | 19.4 | 75  | 7.5  | 0.108  |  |
| Rarawaru        | 4         | 16.1                                                     | 19.9 | 75  | 8.0  | 0.116  |  |
| Rarawaru        | 5         | 16.1                                                     | 21   | 76  | 7.4  | 0.123  |  |

|                    |           | Total Recoverable metals, mg/kg freeze dried wt, <500 $\mu\text{m}$ |      |     |      |       |  |
|--------------------|-----------|---------------------------------------------------------------------|------|-----|------|-------|--|
| Sample             | Replicate | Cu                                                                  | Pb   | Zn  | As   | Hg    |  |
| Roberta Reserve    | 1         | 3.8                                                                 | 7.3  | 39  | 7.6  | 0.058 |  |
| Roberta Reserve    | 2         | 3.6                                                                 | 7.4  | 37  | 6.6  | 0.031 |  |
| Roberta Reserve    | 3         | 3.8                                                                 | 7.3  | 39  | 7.2  | 0.023 |  |
| Roberta Reserve    | 4         | 3.5                                                                 | 7.3  | 38  | 7.3  | 0.026 |  |
| Roberta Reserve    | 5         | 3.6                                                                 | 7.3  | 39  | 7.5  | 0.023 |  |
| Hobsonsville       | 1         | 2.2                                                                 | 5.7  | 22  | 4.5  | 0.035 |  |
| Hobsonsville       | 2         | 2.1                                                                 | 5.7  | 21  | 4.0  | 0.014 |  |
| Hobsonsville       | 3         | 2.1                                                                 | 5.6  | 21  | 3.7  | 0.023 |  |
| Hobsonsville       | 4         | 2.2                                                                 | 5.8  | 21  | 4.2  | 0.023 |  |
| Hobsonsville       | 5         | 2.2                                                                 | 5.7  | 20  | 3.4  | 0.016 |  |
| Puhinui Upper      | 1         | 8.7                                                                 | 12.0 | 99  | 12.0 | 0.026 |  |
| Puhinui Upper      | 2         | 8.2                                                                 | 11.5 | 96  | 12.9 | 0.028 |  |
| Puhinui Upper      | 3         | 7.8                                                                 | 11.0 | 92  | 12.2 | 0.039 |  |
| Puhinui Upper      | 4         | 7.7                                                                 | 10.8 | 91  | 12.7 | 0.033 |  |
| Puhinui Upper      | 5         | 7.7                                                                 | 10.8 | 90  | 13.3 | 0.038 |  |
| Pukaki Airport     | 1         | 7.2                                                                 | 10.3 | 61  | 11.9 | 0.033 |  |
| Pukaki Airport     | 2         | 6.9                                                                 | 9.8  | 59  | 11.4 | 0.027 |  |
| Pukaki Airport     | 3         | 7.4                                                                 | 11.0 | 64  | 12.9 | 0.028 |  |
| Pukaki Airport     | 4         | 7.2                                                                 | 10.6 | 63  | 13.0 | 0.030 |  |
| Pukaki Airport     | 5         | 7.3                                                                 | 10.9 | 64  | 13.0 | 0.033 |  |
| Waimahia Central   | 1         | 7.1                                                                 | 10.9 | 68  | 11.0 | 0.035 |  |
| Waimahia Central   | 2         | 8.0                                                                 | 10.8 | 80  | 12.4 | 0.030 |  |
| Waimahia Central   | 3         | 8.3                                                                 | 10.9 | 81  | 12.4 | 0.030 |  |
| Waimahia Central   | 4         | 7.4                                                                 | 11.0 | 67  | 10.9 | 0.038 |  |
| Waimahia Central   | 5         | 7.4                                                                 | 11.1 | 68  | 10.8 | 0.036 |  |
| Middlemore BRS FD  | 1         | 29                                                                  | 35   | 220 | 8.0  | 0.173 |  |
| Middlemore BRS FD  | 2         | 28                                                                  | 34   | 220 | 7.6  | 0.138 |  |
| Middlemore BRS FD  | 3         | 27                                                                  | 34   | 210 | 7.9  | 0.151 |  |
| Middlemore BRS FD  | 4         | 28                                                                  | 35   | 220 | 7.9  | 0.159 |  |
| Middlemore BRS FD  | 5         | 28                                                                  | 34   | 220 | 7.8  | 0.146 |  |
| Meola Outer BRS FD | 1         | 3.0                                                                 | 8.8  | 39  | 2.4  | 0.034 |  |
| Meola Outer BRS FD | 2         | 2.9                                                                 | 9.1  | 41  | 2.6  | 0.028 |  |
| Meola Outer BRS FD | 3         | 2.8                                                                 | 8.8  | 37  | 2.4  | 0.025 |  |
| Meola Outer BRS FD | 4         | 2.8                                                                 | 8.6  | 38  | 2.4  | 0.026 |  |
| Meola Outer BRS FD | 5         | 3.0                                                                 | 9.0  | 39  | 2.6  | 0.026 |  |
| CRM AGAL 10        | 1         | 21                                                                  | 39   | 49  | 17.0 | 11.0  |  |
| CRM AGAL 10        | 2         | 23                                                                  | 40   | 51  | 16.4 | 10.8  |  |
| CRM AGAL 10        | 3         | 22                                                                  | 39   | 50  | 17.4 | 10.3  |  |

## Appendix B Particle size distribution data

Sediment particle size distribution (PSD) data obtained for a composite surface (0–2 cm) sample per site. Samples were analysed by NIWA (Hamilton) by wet sieving/pipette analysis. The data are % of the total sediment (by weight) in each fraction. Further details can be obtained from NIWA, Hamilton.

QA sample data are included: Within-batch blind duplicates (WB dup) and Bulk Reference Sediments (BRS).

| Site                   | Gravel | Coarse Sand | Medium Sand   | Fine Sand       | Silt        | Clay     |
|------------------------|--------|-------------|---------------|-----------------|-------------|----------|
|                        | > 2 mm | 0.5 - 2 mm  | 0.25 - 0.5 mm | 0.063 - 0.25 mm | 3.9 - 63 μm | < 3.9 μm |
| Benghazi               | 3.63   | 5.24        | 10.13         | 53.71           | 16.83       | 10.47    |
| Bowden                 | 0.02   | 0.69        | 1.91          | 46.16           | 30.63       | 20.59    |
| Chelsea                | 0.84   | 0.41        | 11.46         | 76.11           | 7.18        | 3.99     |
| Coxs                   | 0.63   | 0.68        | 8.76          | 80.83           | 3.58        | 5.53     |
| Harania                | 0.00   | 0.08        | 0.31          | 12.72           | 64.44       | 22.45    |
| Henderson Lower        | 0.00   | 0.07        | 0.14          | 10.03           | 66.23       | 23.53    |
| Pahurehure Middle      | 2.61   | 4.04        | 14.07         | 65.47           | 9.59        | 4.22     |
| Pahurehure Upper       | 0.04   | 0.35        | 0.70          | 24.52           | 60.11       | 14.28    |
| Papakura Lower         | 0.00   | 0.05        | 0.24          | 18.20           | 68.41       | 13.11    |
| Princes                | 0.00   | 1.12        | 4.05          | 59.69           | 19.53       | 15.62    |
| Shoal Hillcrest        | 0.10   | 0.46        | 1.38          | 14.48           | 58.70       | 24.87    |
| Tararata               | 0.00   | 0.08        | 0.18          | 8.26            | 77.22       | 14.25    |
| Whau Entrance          | 1.00   | 0.19        | 1.06          | 84.10           | 9.23        | 4.42     |
| Hillsborough           | 4.67   | 11.89       | 9.30          | 38.82           | 26.93       | 8.39     |
| Mill Bay               | 0.98   | 15.55       | 28.68         | 48.93           | 3.23        | 2.64     |
| Rarawaru               | 0.00   | 0.09        | 0.55          | 32.30           | 52.23       | 14.82    |
| Roberta Reserve        | 3.65   | 1.34        | 10.19         | 78.41           | 2.92        | 3.50     |
| Hobsonsville           | 1.22   | 4.08        | 32.71         | 58.08           | 1.04        | 2.86     |
| Puhinui Upper          | 0.17   | 2.96        | 3.02          | 20.22           | 59.21       | 14.42    |
| Pukaki Airport         | 0.00   | 0.07        | 0.20          | 28.31           | 57.35       | 14.07    |
| Waimahia Central       | 0.00   | 0.12        | 0.35          | 22.93           | 62.95       | 13.66    |
| Middlemore BRS Frozen  | 0.00   | 0.08        | 0.60          | 29.87           | 50.35       | 19.10    |
| Middlemore BRS Frozen  | 0.00   | 0.15        | 0.56          | 33.50           | 42.63       | 23.17    |
| Middlemore BRS Frozen  | 0.00   | 0.14        | 0.71          | 33.97           | 42.18       | 23.01    |
| Meola Outer BRS Frozen | 2.74   | 0.29        | 1.03          | 93.12           | 0.28        | 2.54     |
| Meola Outer BRS Frozen | 0.16   | 0.27        | 0.98          | 95.72           | 0.96        | 1.91     |
| Meola Outer BRS Frozen | 0.53   | 0.23        | 1.02          | 95.20           | 0.75        | 2.26     |

Appendix C NIWA metals data quality assurance check

# Metals Preliminary Data Assessment RDMP samples October-November 2015

Greg Olsen

Katie Cartner

Prepared for Auckland Council

Environmental Research

© All rights reserved. This publication may not be reproduced or copied in any form without the permission of the client. Such permission is to be given only in accordance with the terms of the client's contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system.

March 2016

NIWA Projects: ARC16232 National Institute of Water & Atmospheric Research Ltd

# Data Assessment

NIWA undertook an initial assessment of the metals data by checking variance for each metal for all replicates from each site. If coefficient of variation (CV%) was shown to exceed 15% and this resulted from a single potential outlier, then a request was made to Hill Laboratories to check the data and report back. This resulted in the amendment of the final data report with the replacement of total metals data for some samples following re-analyses. Two copper, two zinc, three arsenic and nine mercury results were investigated and rechecked to confirm values. An additional repeat analysis of total recoverable mercury in sample OA186/81 (Rep 1, TAMAKI-Roberta Reserve) confirmed high variability at this site. All data is reported in Hill Laboratories Reports titled "1525974-SUP-2.pdf" and in Excel spreadsheets titled "1525974-SSFC-2.csv" and "1525974-CR6-2.csv".

# **Quality Assurance**

For metals' analysis, quality assurance was conducted by:

 Laboratory control samples-analysis of procedural blanks, duplicate samples reanalysed by the laboratory, analyses of Certified Reference Material (CRM; AGAL-10) and analysis of "inhouse" reference sediment. These data are reported in Hill Laboratories QA/QC Report, titled "1525974-QCP-1.pdf".

The RJ Hill Laboratory "in-house" reference sediment- "QC-A5"- has elevated concentrations of most metals except mercury.

- Three CRM samples dispersed through the analytical run as extra samples (in addition to the routine laboratory QC CRM samples).
- Analysis of Auckland Council "Bulk Reference Sediments" (BRS). BRS are sediments from two sites (a sandy sediment from Meola zone, and a muddy sediment from Middlemore), which have been archived in freeze-dried form for repeated analysis with each year's monitoring samples. Analysis of the BRS each year provides an on-going record of within-year and between-year analytical variability and changes over time (drift or trend). Five replicates of each of the Meola Outer and Middlemore BRS (in freeze-dried form) were analysed with the 2015 sample batch.

#### **Procedural Blanks**

Metals' concentrations in procedural blanks were all below detection limits (D.L.):

- Total recoverable metals' blanks were <0.2, <0.2, < 0.04, < 0.4, and < 0.01 mg/kg for As, Cu, Pb, Zn and Hg respectively.
- There was therefore no background contamination introduced in the laboratory that would contribute significantly to the reported metals' concentrations.

#### **Reference Materials**

Two types of reference materials were used by Hill Laboratories as quality control checks for metals' analysis:

• The certified reference material (CRM) "AGAL-10", Hawkesbury River Sediment prepared by the Australian Government Analytical Laboratories. This reference material has been used in the RSCMP and preceding monitoring programmes since 2002 to check data accuracy and consistency over time; and

an "in-house" laboratory reference material, "QC-A5", a sample prepared by Hill Laboratories.
 Compared with typical Auckland marine sediments, the QC-A5 reference sediment has elevated concentrations of metals except mercury.

The reference material analyses involved extraction/digestion and ICP-MS analysis only, and did not include the homogenising/sub-sampling/sieving/drying steps undertaken for analysis of field samples. Results are included in the Hill Laboratories QA/QC Report, titled "1525974-QCP-1.pdf" with additional information provided in the following sections.

#### Certified Reference Material Analyses

Three CRM samples (AGAL-10) were included through the analytical run as "unknowns". In addition, Hill Laboratories' in-house QC checks included separate CRM analysis-another four CRMs were analysed for total recoverable metals in the analytical batch containing the RSCMP and MRA samples. Two CRMs were analysed fro As, Cu, Pb, Zn and Hg, one CRM was analysed for As, Cu, Pb and Zn and another CRM was only analysed for Hg.

CRM Data are summarised in Table 1-1 (for the three CRM samples added as "unknowns") and Table 1-2 (for the four CRM samples from Hill Laboratories' in-house QC programme).

All CRM results were within the laboratory in-house limits. This means that the data met the laboratory's normal operating QC standards. Variability (coefficient of variation, CV%) for CRM analysis ranged between 1.7 – 3.5% for the three CRM samples added as "unknowns" and between 1.5-6.7% for the four CRM samples from Hill Laboratories' in-house QC programme, for various metals' analyses, which is similar to data collected in previous years.

Comparisons between measured CRM concentrations and certified concentrations for the three CRMs analysed as unknowns with the RSCMP samples showed that the total recoverable metals were, on average, within the certified ranges except for Zn, which was low.

All CRM concentrations were within 20% of the certified concentrations:

- for the three CRM samples added to the 2015 sample batch, average total Zn was 12% low, while the other metals ranged from 8% low (Hg) to 1% low (As). All individual CRM sample results for Zn were low ranging from 10-14% and a single Cu and Hg result was > 10% lower than the certified concentrations.
- for the four CRM samples from Hill Laboratories' in-house QC programme, added to the 2015 sample batch, average total Hg was 11% low, while the other metals ranged from 10% low (Zn) to 1% high (As). All individual CRM sample results for Zn and two for Hg were low ranging from 8-14% of the certified concentrations.

Overall, the CRM results indicate reasonable accuracy and good precision for metals in the 2016 sample analytical batch. However, these results apply only to the digestion and ICP-MS steps of the overall analysis method. Variability maybe higher when also including sediment processing steps such as sieving and drying. The effects of these additional steps are included in the review of BRS sample QA data.

Comparisons of all the 2016 CRM results for total recoverable metals with those obtained in previous RDP and RSCMP monitoring conducted between 2002 and 2015 are shown in Figure 1-1. Trend plots for the 2002-2016 data are shown in Figure 1-2.

These data indicate that all total metals levels are comparable with those recorded in previous years. Variability for total lead and zinc was low compared with previous years, but total copper variability was similar to data recorded in previous years. The plotted data in Figure 1-2 does suggest an increasing trend in concentrations of total copper over time. Only limited data has been collected to-date for either total arsenic or total mercury, so trend assessments are limited.

**Table 1-1** Metals' concentrations (mg/kg) in three Certified Reference Materials (CRM; AGAL-10) samples, included in the 2015 sediment analytical batch.

The certified upper and lower limits listed in the table are the reference value  $\pm 1$  standard deviation. Yellow shaded values are outside the range (reference value  $\pm 1$  s.d.). Means, as a % of certified values, are colour coded: Green within 10%, Amber within 10-20%, Red greater than 20% of the certified concentrations.

|                                                         | Т     | otal Recove | rable Meta | ls (<500 mr | n)    |
|---------------------------------------------------------|-------|-------------|------------|-------------|-------|
| Sample                                                  | As    | Cu          | Pb         | Hg          | Zn    |
| CRM - Agal 10 - 1                                       | 17.0  | 21.1        | 38.6       | 11.0        | 49.4  |
| CRM - Agal 10 - 2                                       | 16.4  | 22.6        | 40.2       | 10.8        | 51.2  |
| CRM - Agal 10 - 3                                       | 17.4  | 21.9        | 39.1       | 10.3        | 50.2  |
| mean                                                    | 17.0  | 21.9        | 39.3       | 10.7        | 50.2  |
| cv (%)                                                  | 2.9   | 3.3         | 2.2        | 3.5         | 1.7   |
| Mean % of certified value                               | 98.6  | 94.2        | 97.3       | 92.4        | 88.1  |
|                                                         |       |             |            |             |       |
| In-house lower limit (mg/kg; mean - 99% C.L.)           | 16.18 | 19.58       | 32.48      | 10.023      | 46.1  |
| In-house upper limit (mg/kg; mean + 99% C.L.)           | 23.09 | 26.39       | 48.42      | 13.61       | 62.74 |
| In-house 99% C.L. (+/- mg/kg)                           | 3.455 | 3.405       | 7.97       | 1.7935      | 8.32  |
| In-house 99% C.L. (+/- % mean)                          | 17.6  | 14.8        | 19.7       | 15.2        | 15.3  |
|                                                         |       |             |            |             |       |
| Certified Reference Value (mg/kg)                       | 17.2  | 23.2        | 40.4       | 11.6        | 57.0  |
| Certified Lower Limit (mg/kg; reference value - 1 s.d.) | 14.2  | 21.3        | 37.7       | 10.5        | 52.8  |
| Certified Upper Limit (mg/kg; reference value + 1 s.d.) | 20.2  | 25.1        | 43.1       | 12.7        | 61.2  |

**Table 1-2** Metals' concentrations (mg/kg) in three Certified Reference Materials (CRM; AGAL-10) samples, analysed with the 2015 sediment analytical batch as part of the Hill Labs' in-house QC process.

The certified upper and lower limits listed in the table are the reference value  $\pm 1$  standard deviation. Yellow shaded values are outside the range (reference value  $\pm 1$  s.d.). Means, as a % of certified values, are colour coded: Green within 10%, Amber within 10-20%, Red greater than 20% of the certified concentrations.

|                                                         | То    | tal Recove | rable Meta | lls (<500 m | m)    |
|---------------------------------------------------------|-------|------------|------------|-------------|-------|
| Sample                                                  | As    | Cu         | Pb         | Hg          | Zn    |
| CRM - Agal 10 - 1                                       | 17.2  | 21.0       | 40.0       |             | 51.0  |
| CRM - Agal 10 - 2                                       | 18.1  | 24.0       | 40.0       | 10.7        | 51.0  |
| CRM - Agal 10 - 3                                       | 16.9  | 23.0       | 39.0       | 10.2        | 52.0  |
| CRM - Agal 10 - 4                                       |       |            |            | 10.0        |       |
| mean                                                    | 17.4  | 22.7       | 39.7       | 10.3        | 51.3  |
| cv (%)                                                  | 3.6   | 6.7        | 1.5        | 3.5         | 1.1   |
| Mean % of certified value                               | 101.2 | 97.7       | 98.2       | 88.8        | 90.1  |
|                                                         |       |            |            |             |       |
| In-house lower limit (mg/kg; mean - 99% C.L.)           | 16.18 | 19.58      | 32.48      | 10.023      | 46.1  |
| In-house upper limit (mg/kg; mean + 99% C.L.)           | 23.09 | 26.39      | 48.42      | 13.61       | 62.74 |
| In-house 99% C.L. (+/- mg/kg)                           | 3.455 | 3.405      | 7.97       | 1.7935      | 8.32  |
| In-house 99% C.L. (+/- % mean)                          | 17.6  | 14.8       | 19.7       | 15.2        | 15.3  |
|                                                         |       |            |            |             |       |
| Certified Reference Value (mg/kg)                       | 17.2  | 23.2       | 40.4       | 11.6        | 57.0  |
| Certified Lower Limit (mg/kg; reference value - 1 s.d.) | 14.2  | 21.3       | 37.7       | 10.5        | 52.8  |
| Certified Upper Limit (mg/kg; reference value + 1 s.d.) | 20.2  | 25.1       | 43.1       | 12.7        | 61.2  |



**Figure 1-1** Certified Reference Material (CRM) quality control data for Total Recoverable Metals in CRM AGAL-10 for RDP and RSCMP samples analysed in 2002-2016. Plots show concentrations, with vertical error bars (±2 s.d.) about the mean (light blue dash) with certified values (green central line) and upper and lower limits (±1 s.d., dashed red lines).



Figure 1-2 Trends in Total Recoverable Metals in Certified Reference Material (CRM AGAL-10) for RDP and RSCMP samples analysed from 2002-2016. Lines are linear regressions.

#### Hill Laboratories in-house reference sediment

Results from the analysis of Hill Laboratory's in-house reference sediment QC-A5 are presented in Table 1-3. The data show reasonably consistent total metals' results (CVs < 10%, n=6-8) that were within the lab control limits. A footnote in the Hill Laboratories QA/QC report indicated that copper and zinc were outside the in-house confidence limits for one QC-A5 sample, but the run was accepted based upon good results for subsequent QC-A5 samples.

 Table 1-3 Results from the analysis of Hill Laboratory's in-house reference sediment QC-A5.

The upper and lower control limits listed in the table are the reference value  $\pm 3$  standard deviations. Yellow shaded values are outside the range (reference value  $\pm 3$  s.d.). Means, as a % of certified values, are colour coded: Green within 10%, Amber within 10-20%, Red greater than 20% of the certified concentrations.

|                                                                 | Тс         | tal Recove | erable Meta | als (<500 µ  | m)          |
|-----------------------------------------------------------------|------------|------------|-------------|--------------|-------------|
| Sample                                                          | As         | Cu         | Pb          | Hg           | Zn          |
| CRM - QC-A5 -1                                                  | 103        | 122        | 125         |              | 820         |
| CRM - QC-A5 -2                                                  | 87         | 106        | 127         |              | 770         |
| CRM - QC-A5 -3                                                  | 101        | 114        | 115         | 0.39         | 790         |
| CRM - QC-A5 -4                                                  | 104        | 105        | 109         | 0.37         | 760         |
| CRM - QC-A5 -5                                                  | 93         | 107        | 119         | 0.34         | 810         |
| CRM - QC-A5 -6                                                  | 95         | 118        | 110         | 0.35         | 780         |
| CRM - QC-A5 -7                                                  | 115        |            |             | 0.35         |             |
| CRM - QC-A5 -8                                                  | 109        |            |             |              |             |
| CRM - QC-A5 -9                                                  |            |            |             | 0.34         |             |
| CRM - QC-A5 -10                                                 |            |            |             | 0.35         |             |
| CRM - QC-A5 -11                                                 |            | 125        |             |              | 920         |
| mean                                                            | 101        | 114        | 118         | 0.36         | 807         |
| cv (%)                                                          | 8.9        | 7.1        | 6.4         | 5.1          | 6.7         |
| Mean % of in-house reference value                              | 87.9       | 94.9       | 95.5        | 93.6         | 95.5        |
|                                                                 |            |            |             |              |             |
| In-house reference value (mg/kg)                                | 113.5      | 120        | 123         | 0.38         | 845         |
| In-house lower limit (mg/kg; mean - 99% C.L.)                   | 77         | 100        | 86          | 0.29         | 750         |
| In-house upper limit (mg/kg; mean + 99% C.L.)                   | 150        | 140        | 160         | 0.47         | 940         |
| In-house 99% C.L. (+/- mg/kg)<br>In-house 99% C.L. (+/- % mean) | 73<br>32.2 | 40<br>16.7 | 74<br>30.1  | 0.18<br>23.7 | 190<br>11.2 |

#### Analytical replicate variability

A selection of samples were randomly selected and re-analysed to measure repeatability. Results are tabulated in Table 1-4. Differences between replicates for total recoverable metals (<500  $\mu$ m fraction) ranged from 0.0-10.0% which indicates very good repeatability.

 Table 1-4 Analytical replicate variation for total recoverable metals for samples analysed in duplicate by Hill

 Laboratories.

The difference between duplicates (expressed as relative percentage difference; RPD%) are colour coded: Green < 15%, Amber 15-30%, Red > 30%.

|                  | То   | tal Recove | erable Meta | als (<500 µ | m)  |
|------------------|------|------------|-------------|-------------|-----|
| Sample           | As   | Cu         | Pb          | Hg          | Zn  |
| 2562.72 - Rep -1 |      |            | 22.3        |             |     |
| 2562.72 - Rep -2 |      |            | 20.6        |             |     |
| RPD%             |      |            | 7.9         |             |     |
| 2562.68 - Rep -1 |      | 21.4       | 28.7        |             | 192 |
| 2562.68 - Rep -2 |      | 20.5       | 27.4        |             | 181 |
| RPD%             |      | 4.3        | 4.6         |             | 5.9 |
| 2562.47 - Rep -1 | 10.0 |            |             |             |     |
| 2562.47 - Rep -2 | 9.6  |            |             |             |     |
| RPD%             | 4.5  |            |             |             |     |
| 2562.61 - Rep -1 |      |            |             | 0.147       |     |
| 2562.61 - Rep -2 |      |            |             | 0.133       |     |
| RPD%             |      |            |             | 10.0        |     |
| 2562.33 - Rep -1 | 11.7 | 26.1       | 29.3        | 0.134       | 132 |
| 2562.33 - Rep -2 | 12.0 | 26.5       | 29.2        | 0.133       | 132 |
| RPD%             | 2.5  | 1.5        | 0.3         | 0.7         | 0.0 |
| 2562.73 - Rep -1 |      | 17.5       | 23.1        | 0.134       | 153 |
| 2562.73 - Rep -2 |      | 17.4       | 23.2        | 0.131       | 149 |
| RPD%             |      | 0.6        | 0.4         | 2.3         | 2.6 |
| 2562.21 - Rep -1 | 10.1 | 13.2       | 17.3        | 0.058       | 101 |
| 2562.21 - Rep -2 | 10.1 | 13.2       | 17.3        | 0.053       | 101 |
| RPD%             | 0.0  | 0.0        | 0.0         | 8.3         | 0.0 |

#### **Bulk Reference Sediment Results**

Bulk Reference Sediment (BRS) sample analysis consisted of:

• Five samples from each of the sandy Meola Outer and muddy Middlemore sites, both in freeze dried forms, were analysed for total recoverable metals. The results are summarised below.

Total metals analyses results for BRS samples for November 2015 sample batch are summarised in Table 1-5. A comparison of the 2016 BRS results with those obtained in earlier RSCMP monitoring rounds in 2011, 2012, 2013 and 2015 is shown graphically in Figure 1-3.

The BRS metals' data for 2016 had within-batch variability (CVs, N = 5) of 1.8-13.8% for total recoverable metals (<500  $\mu$ m). The variability for total recoverable Hg in sediments from both sites was markedly higher than for other analytes. For the primary monitoring metal contaminants (Cu, Pb and Zn), CVs for total recoverable metals ranged from 1.9-3.5%. These results were similar to previous years.

**Table 1-5** Summary of Bulk Reference Sediment (BRS) results for 2016 for total recoverable metals (mg/kg freeze dry weight).

|             |           | Total Recoverable Metals (<500 μm) |      |      |       |       |
|-------------|-----------|------------------------------------|------|------|-------|-------|
| Site        | Replicate | As                                 | Cu   | Pb   | Hg    | Zn    |
| Middlemore  | Rep -1    | 8.0                                | 29.0 | 35.5 | 0.17  | 224.6 |
|             | Rep -2    | 7.6                                | 27.8 | 33.7 | 0.14  | 217.5 |
|             | Rep -3    | 7.9                                | 27.3 | 33.6 | 0.15  | 214.8 |
|             | Rep -4    | 7.9                                | 28.5 | 35.0 | 0.16  | 224.1 |
|             | Rep -5    | 7.8                                | 27.8 | 33.9 | 0.15  | 219.0 |
|             | Mean      | 7.8                                | 28.1 | 34.3 | 0.15  | 220.0 |
|             | stdev     | 0.14                               | 0.69 | 0.83 | 0.013 | 4.23  |
|             | CV%       | 1.8                                | 2.4  | 2.4  | 8.6   | 1.9   |
| Meola Outer | Rep -1    | 2.4                                | 3.0  | 8.8  | 0.034 | 38.5  |
|             | Rep -2    | 2.6                                | 2.9  | 9.1  | 0.028 | 40.6  |
|             | Rep -3    | 2.4                                | 2.8  | 8.8  | 0.025 | 37.0  |
|             | Rep -4    | 2.4                                | 2.8  | 8.6  | 0.026 | 38.0  |
|             | Rep -5    | 2.6                                | 3.0  | 9.0  | 0.026 | 39.2  |
|             | Mean      | 2.5                                | 2.9  | 8.9  | 0.028 | 38.6  |
|             | stdev     | 0.12                               | 0.10 | 0.17 | 0.004 | 1.36  |
|             | CV%       | 4.6                                | 3.4  | 1.9  | 13.8  | 3.5   |

|  | N : | = | 5 | replicates | for | each | bulk | reference | sediment. |
|--|-----|---|---|------------|-----|------|------|-----------|-----------|
|--|-----|---|---|------------|-----|------|------|-----------|-----------|



**Figure 1-3** Total recoverable Cu, Pb, and Zn results for freeze-dried (FD) bulk reference sediments (BRS) analysed with RSCMP samples in 2011, 2012, 2013, 2015 and 2016. Vertical bars are means (light blue dash) ±2 s.d (N=6 in 2011 and 2012, N=3 in 2013 and 2015, N=5 in 2016).

# Appendix D R J Hill Laboratories report



R J Hill Laboratories LimitedT1 Clyde StreetFPrivate Bag 3205EHamilton 3240, New ZealandV

 Tel
 +64 7 858 2000

 Fax
 +64 7 858 2001

 Email
 mail@hill-labs.co.nz

 Web
 www.hill-labs.co.nz

Page 1 of 5

# ANALYSIS REPORT

Client: Contact: Auckland Council P Williams C/- Auckland Council 1 The Strand Takapuna 0622

| Lab No:                  | 1525974 SPv3          |
|--------------------------|-----------------------|
| Date Registered:         | 18-Jan-2016           |
| Date Reported:           | 24-May-2016           |
| Quote No:                | 74152                 |
| Order No:                | 3000226162            |
| <b>Client Reference:</b> | AC/NIWA RSCMP 2015/16 |
| Submitted By:            | Katie Cartner         |

# Amended Report

This report replaces an earlier report issued on the 18 Mar 2016 at 12:16 pm The original mercury results reported for samples OA186/6, /44, and /45 have been re-instated at the request of the client.

| Sample Type: Sedime       | nt           |            |            |            |            |            |
|---------------------------|--------------|------------|------------|------------|------------|------------|
|                           | Sample Name: | OA186/1    | OA186/21   | OA186/40   | OA186/61   | OA186/80   |
|                           | Lab Number:  | 1525974.1  | 1525974.2  | 1525974.3  | 1525974.4  | 1525974.5  |
| Total Recoverable Arsenic | mg/kg dry wt | 6.3        | 12         | 11.4       | 2.6        | 7.4        |
| Total Recoverable Copper  | mg/kg dry wt | 10.2       | 16.1       | 7.3        | 4.4        | 16.1       |
| Total Recoverable Lead    | mg/kg dry wt | 14.8       | 22         | 11.6       | 8.2        | 21         |
| Total Recoverable Mercury | mg/kg dry wt | 0.067      | 0.062      | 0.031      | 0.040      | 0.123      |
| Total Recoverable Zinc    | mg/kg dry wt | 83         | 120        | 72         | 37         | 76         |
|                           | Sample Name: | OA186/98   | OA186/2    | OA186/22   | OA186/41   | OA186/62   |
|                           | Lab Number:  | 1525974.6  | 1525974.7  | 1525974.8  | 1525974.9  | 1525974.10 |
| Total Recoverable Arsenic | mg/kg dry wt | 12.9       | 5.9        | 12         | 11.6       | 2.6        |
| Total Recoverable Copper  | mg/kg dry wt | 7.4        | 9.8        | 18         | 7.9        | 4.3        |
| Total Recoverable Lead    | mg/kg dry wt | 11.0       | 14.5       | 22         | 12.1       | 8.3        |
| Total Recoverable Mercury | mg/kg dry wt | 0.028      | 0.067      | 0.058      | 0.040      | 0.034      |
| Total Recoverable Zinc    | mg/kg dry wt | 64         | 77         | 138        | 71         | 37         |
|                           | Sample Name: | OA186/81   | OA186/99   | OA186/3    | OA186/23   | OA186/42   |
|                           | Lab Number:  | 1525974.11 | 1525974.12 | 1525974.13 | 1525974.14 | 1525974.15 |
| Total Recoverable Arsenic | mg/kg dry wt | 7.6        | 13         | 6.1        | 12         | 11         |
| Total Recoverable Copper  | mg/kg dry wt | 3.8        | 7.2        | 10.3       | 18.1       | 7.3        |
| Total Recoverable Lead    | mg/kg dry wt | 7.3        | 10.6       | 15.4       | 22         | 11.5       |
| Total Recoverable Mercury | mg/kg dry wt | 0.058      | 0.030      | 0.076      | 0.060      | 0.035      |
| Total Recoverable Zinc    | mg/kg dry wt | 39         | 63         | 88         | 138        | 67         |
|                           | Sample Name: | OA186/63   | OA186/82   | OA186/100  | OA186/4    | OA186/24   |
|                           | Lab Number:  | 1525974.16 | 1525974.17 | 1525974.18 | 1525974.19 | 1525974.20 |
| Total Recoverable Arsenic | mg/kg dry wt | 2.7        | 6.6        | 13         | 6.3        | 12.4       |
| Total Recoverable Copper  | mg/kg dry wt | 4.4        | 3.6        | 7.3        | 10.5       | 18.5       |
| Total Recoverable Lead    | mg/kg dry wt | 8.4        | 7.4        | 10.9       | 15.5       | 22         |
| Total Recoverable Mercury | mg/kg dry wt | 0.033      | 0.031      | 0.033      | 0.060      | 0.052      |
| Total Recoverable Zinc    | mg/kg dry wt | 40         | 37         | 64         | 95         | 143        |
|                           | Sample Name: | OA186/43   | OA186/64   | OA186/83   | OA186/101  | OA186/5    |
|                           | Lab Number:  | 1525974.21 | 1525974.22 | 1525974.23 | 1525974.24 | 1525974.25 |
| Total Recoverable Arsenic | mg/kg dry wt | 11         | 2.6        | 7.2        | 11         | 6.1        |
| Total Recoverable Copper  | mg/kg dry wt | 7.8        | 4.2        | 3.8        | 7.1        | 10.3       |
| Total Recoverable Lead    | mg/kg dry wt | 11.8       | 8.2        | 7.3        | 10.9       | 15.3       |
| Total Recoverable Mercury | mg/kg dry wt | 0.035      | 0.030      | 0.023      | 0.035      | 0.060      |
| Total Recoverable Zinc    | mg/kg dry wt | 72         | 38         | 39         | 68         | 81         |





This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked \*, which are not accredited.

| Sample Type: Sedime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OA186/25                                                                                                                                                                                                                             | OA186/44                                                                                                                                                                                                                                 | OA186/65                                                                                                                                                                                                                                          | OA186/84                                                                                                                                                                                                                                  | OA186/102                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lab Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1525974.26                                                                                                                                                                                                                           | 1525974.27                                                                                                                                                                                                                               | 1525974.28                                                                                                                                                                                                                                        | 1525974.29                                                                                                                                                                                                                                | 1525974.30                                                                                                                                                                                                                           |
| Total Recoverable Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.3                                                                                                                                                                                                                                 | 10.6                                                                                                                                                                                                                                     | 2.5                                                                                                                                                                                                                                               | 7.3                                                                                                                                                                                                                                       | 12.4                                                                                                                                                                                                                                 |
| Total Recoverable Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                        | 4.1                                                                                                                                                                                                                                               | 3.5                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                    |
| Total Recoverable Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22                                                                                                                                                                                                                                   | 11.5                                                                                                                                                                                                                                     | 8.1                                                                                                                                                                                                                                               | 7.3                                                                                                                                                                                                                                       | 10.8                                                                                                                                                                                                                                 |
| Total Recoverable Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.058                                                                                                                                                                                                                                | 0.035                                                                                                                                                                                                                                    | 0.031                                                                                                                                                                                                                                             | 0.026                                                                                                                                                                                                                                     | 0.030                                                                                                                                                                                                                                |
| Total Recoverable Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 144                                                                                                                                                                                                                                  | 67                                                                                                                                                                                                                                       | 36                                                                                                                                                                                                                                                | 38                                                                                                                                                                                                                                        | 80                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OA186/6                                                                                                                                                                                                                              | OA186/26                                                                                                                                                                                                                                 | OA186/45                                                                                                                                                                                                                                          | OA186/66                                                                                                                                                                                                                                  | OA186/85                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lab Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1525974 31                                                                                                                                                                                                                           | 1525974 32                                                                                                                                                                                                                               | 1525974 33                                                                                                                                                                                                                                        | 1525974 34                                                                                                                                                                                                                                | 1525974 35                                                                                                                                                                                                                           |
| Total Recoverable Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.8                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                       | 11.6                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                         | 75                                                                                                                                                                                                                                   |
| Total Recoverable Conner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22                                                                                                                                                                                                                                   | 26                                                                                                                                                                                                                                       | 9.1                                                                                                                                                                                                                                               | 77                                                                                                                                                                                                                                        | 3.6                                                                                                                                                                                                                                  |
| Total Recoverable Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29                                                                                                                                                                                                                                   | 29                                                                                                                                                                                                                                       | 12.2                                                                                                                                                                                                                                              | 12.1                                                                                                                                                                                                                                      | 7.3                                                                                                                                                                                                                                  |
| Total Recoverable Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.146                                                                                                                                                                                                                                | 0.127                                                                                                                                                                                                                                    | 0.030                                                                                                                                                                                                                                             | 0.031                                                                                                                                                                                                                                     | 0.023                                                                                                                                                                                                                                |
| Total Recoverable Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ma/ka dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 199                                                                                                                                                                                                                                  | 133                                                                                                                                                                                                                                      | 68                                                                                                                                                                                                                                                | 68                                                                                                                                                                                                                                        | 39                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4.00/4.00                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                   | 0.1.100/07                                                                                                                                                                                                                                |                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OA186/103                                                                                                                                                                                                                            | Agal10-1                                                                                                                                                                                                                                 | OA186/7                                                                                                                                                                                                                                           | OA186/27                                                                                                                                                                                                                                  | OA186/46                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lab Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1525974.36                                                                                                                                                                                                                           | 1525974.37                                                                                                                                                                                                                               | 1525974.38                                                                                                                                                                                                                                        | 1525974.39                                                                                                                                                                                                                                | 1525974.40                                                                                                                                                                                                                           |
| Total Recoverable Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.4                                                                                                                                                                                                                                 | 17.0                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                    |
| I otal Recoverable Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.3                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                       | 21                                                                                                                                                                                                                                                | 32                                                                                                                                                                                                                                        | 16.0                                                                                                                                                                                                                                 |
| I otal Recoverable Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.9                                                                                                                                                                                                                                 | 39                                                                                                                                                                                                                                       | 29                                                                                                                                                                                                                                                | 28                                                                                                                                                                                                                                        | 24                                                                                                                                                                                                                                   |
| Total Recoverable Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.030                                                                                                                                                                                                                                | 11.0                                                                                                                                                                                                                                     | 0.147                                                                                                                                                                                                                                             | 0.121                                                                                                                                                                                                                                     | 0.112                                                                                                                                                                                                                                |
| I otal Recoverable Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81                                                                                                                                                                                                                                   | 49                                                                                                                                                                                                                                       | 192                                                                                                                                                                                                                                               | 157                                                                                                                                                                                                                                       | 147                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OA186/67                                                                                                                                                                                                                             | OA186/86                                                                                                                                                                                                                                 | OA186/104                                                                                                                                                                                                                                         | OA186/8                                                                                                                                                                                                                                   | OA186/28                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lab Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1525974.41                                                                                                                                                                                                                           | 1525974.42                                                                                                                                                                                                                               | 1525974.43                                                                                                                                                                                                                                        | 1525974.44                                                                                                                                                                                                                                | 1525974.45                                                                                                                                                                                                                           |
| Total Recoverable Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.2                                                                                                                                                                                                                                  | 4.5                                                                                                                                                                                                                                      | 10.9                                                                                                                                                                                                                                              | 9.1                                                                                                                                                                                                                                       | 10.7                                                                                                                                                                                                                                 |
| Total Recoverable Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.4                                                                                                                                                                                                                                  | 2.2                                                                                                                                                                                                                                      | 7.4                                                                                                                                                                                                                                               | 23                                                                                                                                                                                                                                        | 27                                                                                                                                                                                                                                   |
| Total Recoverable Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.4                                                                                                                                                                                                                                 | 5.7                                                                                                                                                                                                                                      | 11.0                                                                                                                                                                                                                                              | 29                                                                                                                                                                                                                                        | 29                                                                                                                                                                                                                                   |
| Total Recoverable Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.033                                                                                                                                                                                                                                | 0.035                                                                                                                                                                                                                                    | 0.038                                                                                                                                                                                                                                             | 0.166                                                                                                                                                                                                                                     | 0.137                                                                                                                                                                                                                                |
| Total Recoverable Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65                                                                                                                                                                                                                                   | 22                                                                                                                                                                                                                                       | 67                                                                                                                                                                                                                                                | 192                                                                                                                                                                                                                                       | 135                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OA186/47                                                                                                                                                                                                                             | OA186/68                                                                                                                                                                                                                                 | OA186/87                                                                                                                                                                                                                                          | OA186/105                                                                                                                                                                                                                                 | OA186/9                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Name:<br>Lab Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OA186/47<br>1525974.46                                                                                                                                                                                                               | OA186/68<br>1525974.47                                                                                                                                                                                                                   | OA186/87<br>1525974.48                                                                                                                                                                                                                            | OA186/105<br>1525974.49                                                                                                                                                                                                                   | OA186/9<br>1525974.50                                                                                                                                                                                                                |
| Total Recoverable Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Name:<br>Lab Number:<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OA186/47<br>1525974.46<br>8.2                                                                                                                                                                                                        | OA186/68<br>1525974.47<br>7.1                                                                                                                                                                                                            | OA186/87<br>1525974.48<br>4.0                                                                                                                                                                                                                     | OA186/105<br>1525974.49<br>10.8                                                                                                                                                                                                           | OA186/9<br>1525974.50<br>8.6                                                                                                                                                                                                         |
| Total Recoverable Arsenic<br>Total Recoverable Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OA186/47<br>1525974.46<br>8.2<br>18.4                                                                                                                                                                                                | OA186/68<br>1525974.47<br>7.1<br>7.4                                                                                                                                                                                                     | OA186/87<br>1525974.48<br>4.0<br>2.1                                                                                                                                                                                                              | OA186/105<br>1525974.49<br>10.8<br>7.4                                                                                                                                                                                                    | OA186/9<br>1525974.50<br>8.6<br>22                                                                                                                                                                                                   |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24                                                                                                                                                                                          | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8                                                                                                                                                                                             | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7                                                                                                                                                                                                       | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1                                                                                                                                                                                            | OA186/9<br>1525974.50<br>8.6<br>22<br>29                                                                                                                                                                                             |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145                                                                                                                                                                                 | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025                                                                                                                                                                                    | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014                                                                                                                                                                                              | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036                                                                                                                                                                                   | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144                                                                                                                                                                                    |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160                                                                                                                                                                          | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63                                                                                                                                                                              | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21                                                                                                                                                                                        | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68                                                                                                                                                                             | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190                                                                                                                                                                             |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29                                                                                                                                                              | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48                                                                                                                                                                  | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69                                                                                                                                                                            | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88                                                                                                                                                                 | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1                                                                                                                                                                |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51                                                                                                                                                | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52                                                                                                                                                    | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53                                                                                                                                                              | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54                                                                                                                                                   | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55                                                                                                                                                  |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6                                                                                                                                        | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3                                                                                                                                             | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2                                                                                                                                                       | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7                                                                                                                                            | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0                                                                                                                                           |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc<br>Total Recoverable Arsenic<br>Total Recoverable Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28                                                                                                                                  | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8                                                                                                                                     | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2                                                                                                                                                | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1                                                                                                                                     | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29                                                                                                                                     |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc<br>Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30                                                                                                                            | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22                                                                                                                               | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>10.7                                                                                                                                        | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6                                                                                                                              | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35                                                                                                                               |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc<br>Total Recoverable Arsenic<br>Total Recoverable Arsenic<br>Total Recoverable Lead<br>Total Recoverable Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150                                                                                                                   | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137                                                                                                                      | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>10.7<br>0.033                                                                                                                               | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023                                                                                                                     | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173                                                                                                                      |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc<br>Total Recoverable Arsenic<br>Total Recoverable Arsenic<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137                                                                                                            | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146                                                                                                               | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>7.2<br>10.7<br>0.033<br>63                                                                                                                  | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21                                                                                                               | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220                                                                                                               |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc<br>Total Recoverable Arsenic<br>Total Recoverable Arsenic<br>Total Recoverable Lead<br>Total Recoverable Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137<br>OA186/10                                                                                                | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146<br>OA186/30                                                                                                   | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>10.7<br>0.033<br>63<br>OA186/49                                                                                                             | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21<br>OA186/70                                                                                                   | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220<br>OA186/89                                                                                                   |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc<br>Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137<br>OA186/10<br>1525974.56                                                                                  | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146<br>OA186/30<br>1525974.57                                                                                     | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>10.7<br>0.033<br>63<br>OA186/49<br>1525974.58                                                                                               | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21<br>OA186/70<br>1525974.59                                                                                     | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220<br>OA186/89<br>1525974.60                                                                                     |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc<br>Total Recoverable Arsenic<br>Total Recoverable Arsenic<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137<br>OA186/10<br>1525974.56                                                                                  | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146<br>OA186/30<br>1525974.57                                                                                     | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>10.7<br>0.033<br>63<br>OA186/49<br>1525974.58                                                                                               | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>0A186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21<br>OA186/70<br>1525974.59                                                                                     | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220<br>OA186/89<br>1525974.60                                                                                     |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc<br>Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Mercury<br>Total Recoverable Mercury<br>Total Recoverable Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137<br>OA186/10<br>1525974.56<br>9.0<br>22                                                                     | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146<br>OA186/30<br>1525974.57<br>11.7<br>26                                                                       | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>7.2<br>10.7<br>0.033<br>63<br>OA186/49<br>1525974.58<br>6.9<br>17.5                                                                         | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21<br>OA186/70<br>1525974.59<br>7.2<br>7.2                                                                       | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220<br>OA186/89<br>1525974.60<br>4.2                                                                              |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc<br>Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Arsenic<br>Total Recoverable Arsenic<br>Total Recoverable Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137<br>OA186/10<br>1525974.56<br>9.0<br>22<br>31                                                               | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146<br>OA186/30<br>1525974.57<br>11.7<br>26<br>29                                                                 | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>10.7<br>0.033<br>63<br>OA186/49<br>1525974.58<br>6.9<br>17.5<br>23                                                                          | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21<br>OA186/70<br>1525974.59<br>7.2<br>7.1<br>10.8                                                               | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220<br>OA186/89<br>1525974.60<br>4.2<br>2.2<br>5.8                                                                |
| Total Recoverable Arsenic         Total Recoverable Copper         Total Recoverable Mercury         Total Recoverable Mercury         Total Recoverable Zinc         Intervention         Total Recoverable Arsenic         Total Recoverable Arsenic         Total Recoverable Arsenic         Total Recoverable Lead         Total Recoverable Mercury         Total Recoverable Mercury         Total Recoverable Arsenic         Total Recoverable Arsenic         Total Recoverable Copper         Total Recoverable Arsenic                                                                                                           | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137<br>OA186/10<br>1525974.56<br>9.0<br>22<br>31<br>0.159                                                      | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146<br>OA186/30<br>1525974.57<br>11.7<br>26<br>29<br>0.134                                                        | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>10.7<br>0.033<br>63<br>OA186/49<br>1525974.58<br>6.3<br>OA186/49<br>1525974.58<br>6.9<br>17.5<br>23<br>0.134                                | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21<br>OA186/70<br>1525974.59<br>7.2<br>7.1<br>10.8<br>0.034                                                      | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220<br>OA186/89<br>1525974.60<br>4.2<br>2.2<br>5.8<br>0.023                                                       |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc<br>Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Mercury<br>Total Recoverable Mercury<br>Total Recoverable Arsenic<br>Total Recoverable Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137<br>OA186/10<br>1525974.56<br>9.0<br>22<br>31<br>0.159<br>199                                               | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146<br>OA186/30<br>1525974.57<br>11.7<br>26<br>29<br>0.134                                                        | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>7.2<br>7.2<br>10.7<br>0.033<br>63<br>OA186/49<br>1525974.58<br>6.9<br>17.5<br>23<br>0.134                                                   | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21<br>OA186/70<br>1525974.59<br>7.2<br>7.1<br>10.8<br>0.034<br>63                                                | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220<br>OA186/89<br>1525974.60<br>4.2<br>2.2<br>5.8<br>0.023<br>21                                                 |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc<br>Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Mercury<br>Total Recoverable Mercury<br>Total Recoverable Arsenic<br>Cotal Recoverable Arsenic<br>Total Recoverable Arsenic<br>Total Recoverable Arsenic<br>Total Recoverable Arsenic<br>Total Recoverable Mercury<br>Total Recoverable Mercury<br>Total Recoverable Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137<br>OA186/10<br>1525974.56<br>9.0<br>22<br>31<br>0.159<br>199                                               | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146<br>OA186/30<br>1525974.57<br>11.7<br>26<br>29<br>0.134<br>132                                                 | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>7.2<br>10.7<br>0.033<br>63<br>OA186/49<br>1525974.58<br>6.9<br>17.5<br>23<br>0.134<br>153                                                   | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21<br>OA186/70<br>1525974.59<br>7.2<br>7.1<br>10.8<br>0.034<br>63                                                | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220<br>OA186/89<br>1525974.60<br>4.2<br>2.2<br>5.8<br>0.023<br>21                                                 |
| Total Recoverable Arsenic         Total Recoverable Copper         Total Recoverable Lead         Total Recoverable Mercury         Total Recoverable Zinc         Intervention         Total Recoverable Arsenic         Total Recoverable Arsenic         Total Recoverable Copper         Total Recoverable Lead         Total Recoverable Mercury         Total Recoverable Mercury         Total Recoverable Arsenic         Total Recoverable Arsenic         Total Recoverable Copper         Total Recoverable Arsenic         Total Recoverable Copper         Total Recoverable Mercury         Total Recoverable Mercury         Total Recoverable Zinc                                                                                                                                                                                       | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137<br>OA186/10<br>1525974.56<br>9.0<br>22<br>31<br>0.159<br>199<br>OA186/QA2                                  | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146<br>OA186/30<br>1525974.57<br>11.7<br>26<br>29<br>0.134<br>132<br>OA186/11                                     | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>10.7<br>0.033<br>63<br>OA186/49<br>1525974.58<br>6.9<br>1525974.58<br>6.9<br>17.5<br>23<br>0.134<br>153                                     | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21<br>OA186/70<br>1525974.59<br>7.2<br>7.1<br>10.8<br>0.034<br>63<br>OA186/50                                    | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220<br>OA186/89<br>1525974.60<br>4.2<br>2.2<br>5.8<br>0.023<br>21<br>OA186/71                                     |
| Total Recoverable Arsenic         Total Recoverable Copper         Total Recoverable Mercury         Total Recoverable Mercury         Total Recoverable Zinc         Intervention         Total Recoverable Arsenic         Total Recoverable Arsenic         Total Recoverable Arsenic         Total Recoverable Mercury         Total Recoverable Mercury         Total Recoverable Mercury         Total Recoverable Arsenic         Total Recoverable Arsenic | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137<br>OA186/10<br>1525974.56<br>9.0<br>22<br>31<br>0.159<br>199<br>OA186/QA2<br>1525974.61                    | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146<br>OA186/30<br>1525974.57<br>11.7<br>26<br>29<br>0.134<br>132<br>OA186/11<br>1525974.62                       | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>7.2<br>10.7<br>0.033<br>63<br>OA186/49<br>1525974.58<br>6.9<br>17.5<br>23<br>0.134<br>152<br>3<br>0.134<br>153                              | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21<br>OA186/70<br>1525974.59<br>7.2<br>7.1<br>10.8<br>0.034<br>63<br>OA186/50<br>1525974.64                      | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220<br>OA186/89<br>1525974.60<br>4.2<br>2.2<br>5.8<br>0.023<br>21<br>OA186/71<br>1525974.65                       |
| Total Recoverable Arsenic<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Zinc<br>Total Recoverable Arsenic<br>Total Recoverable Arsenic<br>Total Recoverable Mercury<br>Total Recoverable Mercury<br>Total Recoverable Arsenic<br>Total Recoverable Arsenic<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Mercury<br>Total Recoverable Mercury<br>Total Recoverable Mercury<br>Total Recoverable Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137<br>OA186/10<br>1525974.56<br>9.0<br>22<br>31<br>0.159<br>199<br>OA186/QA2<br>1525974.61<br>7.6             | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146<br>OA186/30<br>1525974.57<br>11.7<br>26<br>29<br>0.134<br>132<br>OA186/11<br>1525974.62<br>6.3                | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>7.2<br>7.2<br>10.7<br>0.033<br>63<br>OA186/49<br>1525974.58<br>6.9<br>17.5<br>23<br>0.134<br>152<br>3<br>0.134<br>153                       | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21<br>OA186/70<br>1525974.59<br>7.2<br>7.1<br>10.8<br>0.034<br>63<br>OA186/50<br>1525974.64                      | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220<br>OA186/89<br>1525974.60<br>4.2<br>2.2<br>5.8<br>0.023<br>21<br>OA186/71<br>1525974.65<br>10.0               |
| Total Recoverable Arsenic         Total Recoverable Copper         Total Recoverable Lead         Total Recoverable Mercury         Total Recoverable Mercury         Total Recoverable Zinc         Intervention         Total Recoverable Arsenic         Total Recoverable Arsenic         Total Recoverable Lead         Total Recoverable Mercury         Total Recoverable Mercury         Total Recoverable Arsenic         Total Recoverable Lead         Total Recoverable Arsenic         Total Recoverable Arsenic         Total Recoverable Lead         Total Recoverable Arsenic         Total Recoverable Arsenic         Total Recoverable Arsenic         Total Recoverable Zinc         Intervention         Intervention         Intervention         Intervention         Intervention                                                                                                                                                                                                                         | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                 | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137<br>OA186/10<br>1525974.56<br>9.0<br>22<br>31<br>0.159<br>199<br>OA186/QA2<br>1525974.61<br>7.6<br>28       | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146<br>OA186/30<br>1525974.57<br>11.7<br>26<br>29<br>0.134<br>132<br>OA186/11<br>1525974.62<br>6.3<br>6.0         | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>7.2<br>10.7<br>0.033<br>63<br>OA186/49<br>1525974.58<br>6.9<br>17.5<br>23<br>0.134<br>152<br>3<br>OA186/31<br>1525974.63<br>10.3<br>2.2     | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>OA186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21<br>OA186/70<br>1525974.59<br>7.2<br>7.1<br>10.8<br>0.034<br>63<br>OA186/50<br>1525974.64<br>7.5<br>16.8       | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220<br>OA186/89<br>1525974.60<br>4.2<br>2.2<br>5.8<br>0.023<br>21<br>OA186/71<br>1525974.65<br>10.0<br>4.3        |
| Total Recoverable Arsenic         Total Recoverable Copper         Total Recoverable Lead         Total Recoverable Mercury         Total Recoverable Mercury         Total Recoverable Zinc         Intervention         Total Recoverable Arsenic         Total Recoverable Arsenic         Total Recoverable Arsenic         Total Recoverable Mercury         Total Recoverable Mercury         Total Recoverable Arsenic         Total Recoverable Lead                                                                                                             | Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>Sample Name:<br>Lab Number:<br>mg/kg dry wt<br>mg/kg dry wt | OA186/47<br>1525974.46<br>8.2<br>18.4<br>24<br>0.145<br>160<br>OA186/29<br>1525974.51<br>10.6<br>28<br>30<br>0.150<br>137<br>OA186/10<br>1525974.56<br>9.0<br>22<br>31<br>0.159<br>199<br>OA186/QA2<br>1525974.61<br>7.6<br>28<br>34 | OA186/68<br>1525974.47<br>7.1<br>7.4<br>10.8<br>0.025<br>63<br>OA186/48<br>1525974.52<br>7.3<br>16.8<br>22<br>0.137<br>146<br>OA186/30<br>1525974.57<br>11.7<br>26<br>29<br>0.134<br>132<br>OA186/11<br>1525974.62<br>6.3<br>6.0<br>12.7 | OA186/87<br>1525974.48<br>4.0<br>2.1<br>5.7<br>0.014<br>21<br>OA186/69<br>1525974.53<br>7.2<br>7.2<br>10.7<br>0.033<br>63<br>OA186/49<br>1525974.58<br>6.9<br>17.5<br>23<br>0.134<br>152<br>3<br>OA186/31<br>1525974.63<br>OA186/31<br>1525974.63 | OA186/105<br>1525974.49<br>10.8<br>7.4<br>11.1<br>0.036<br>68<br>0A186/88<br>1525974.54<br>3.7<br>2.1<br>5.6<br>0.023<br>21<br>OA186/70<br>1525974.59<br>7.2<br>7.1<br>10.8<br>0.034<br>63<br>OA186/50<br>1525974.64<br>7.5<br>16.8<br>23 | OA186/9<br>1525974.50<br>8.6<br>22<br>29<br>0.144<br>190<br>OA186/QA1<br>1525974.55<br>8.0<br>29<br>35<br>0.173<br>220<br>OA186/89<br>1525974.60<br>4.2<br>2.2<br>5.8<br>0.023<br>21<br>OA186/71<br>1525974.65<br>10.0<br>4.3<br>9.1 |

| Sample Type: Sedime                     | nt            |            |            |            |            |             |
|-----------------------------------------|---------------|------------|------------|------------|------------|-------------|
|                                         | Sample Name:  | OA186/QA2  | OA186/11   | OA186/31   | OA186/50   | OA186/71    |
|                                         | Lab Number:   | 1525974.61 | 1525974.62 | 1525974.63 | 1525974.64 | 1525974.65  |
| Total Recoverable Zinc                  | mg/kg dry wt  | 220        | 47         | 33         | 148        | 55          |
|                                         | Comple Nome   | 04186/00   | 04196/042  | 04196/12   | 01196/22   | 04196/51    |
|                                         | Sample Name:  | 0A100/90   | 0A 160/QA3 | 0A100/12   | 0A100/32   | UA 160/51   |
|                                         | Lab Number:   | 1525974.66 | 1525974.67 | 1525974.68 | 1525974.69 | 1525974.70  |
| Total Recoverable Arsenic               | mg/kg dry wt  | 3.4        | 7.9        | 7.1        | 8.1        | 8.0         |
| Total Recoverable Copper                | mg/kg dry wt  | 2.2        | 27         | 6.0        | 2.0        | 15.7        |
| Total Recoverable Lead                  | mg/kg dry wt  | 5.7        | 0 151      | 13.0       | 5.8        | 27          |
| Total Recoverable Titercury             | mg/kg dry wt  | 20         | 210        | 0.045      | < 0.010    | 0.174       |
|                                         | nig/kg ury wi | 20         | 210        | 49         | 30         | 57          |
|                                         | Sample Name:  | OA186/72   | OA186/58   | OA186/91   | OA186/QA4  | OA186/13    |
|                                         | Lab Number:   | 1525974.71 | 1525974.72 | 1525974.73 | 1525974.74 | 1525974.75  |
| Total Recoverable Arsenic               | mg/kg dry wt  | 10.8       | 10         | 12.0       | 7.9        | 6.6         |
| Total Recoverable Copper                | mg/kg dry wt  | 4.2        | 14.1       | 8.7        | 28         | 6.0         |
| Total Recoverable Lead                  | mg/kg dry wt  | 8.3        | 18.8       | 12.0       | 35         | 12.7        |
| Total Recoverable Mercury               | mg/kg dry wt  | < 0.010    | 0.049      | 0.026      | 0.159      | 0.062       |
| Total Recoverable Zinc                  | mg/kg dry wt  | 51         | 110        | 99         | 220        | 46          |
|                                         | Sample Name:  | OA186/33   | OA186/52   | OA186/73   | Agal10-2   | OA186/92    |
|                                         | Lab Number:   | 1525974.76 | 1525974.77 | 1525974.78 | 1525974.79 | 1525974.80  |
| Total Recoverable Arsenic               | mg/kg dry wt  | 8.5        | 8.1        | 10.3       | 16.4       | 12.9        |
| Total Recoverable Copper                | mg/kg dry wt  | 2.1        | 16.1       | 4.0        | 23         | 8.2         |
| Total Recoverable Lead                  | mg/kg dry wt  | 5.7        | 29         | 8.6        | 40         | 11.5        |
| Total Recoverable Mercury               | mg/kg dry wt  | < 0.010    | 0.175      | < 0.010    | 10.8       | 0.028       |
| Total Recoverable Zinc                  | mg/kg dry wt  | 31         | 100        | 51         | 51         | 96          |
|                                         | Sample Name:  | OA186/QA5  | OA186/14   | OA186/34   | OA186/53   | OA186/74    |
|                                         | Lab Number:   | 1525974.81 | 1525974.82 | 1525974.83 | 1525974.84 | 1525974.85  |
| Total Recoverable Arsenic               | ma/ka dry wt  | 7.8        | 5.8        | 10.2       | 85         | 13.6        |
| Total Recoverable Copper                | ma/ka dry wt  | 28         | 6.2        | 1.9        | 15.5       | 4.0         |
| Total Recoverable Lead                  | ma/ka drv wt  | 34         | 12.2       | 5.8        | 27         | 8.6         |
| Total Recoverable Mercury               | mg/kg dry wt  | 0.146      | 0.044      | 0.019      | 0.161      | 0.011       |
| Total Recoverable Zinc                  | mg/kg dry wt  | 220        | 44         | 32         | 94         | 51          |
|                                         | Sample Name   | 04186/03   | 04186/046  | 04186/59   | 04186/15   | 04186/35    |
|                                         | Sample Name.  | 1525074.96 | 1525074.97 | 1525074.99 | 1525074 80 | 1525074.00  |
| Total Decoverable Arconic               |               | 1020974.00 | 1525974.07 | 1020974.00 | 1525974.69 | 1525974.90  |
| Total Recoverable Arsenic               | mg/kg dry wt  | 12.2       | 2.4        | 10.1       | 6.0        | 9.5         |
| Total Recoverable Load                  | mg/kg dry wt  | 11.0       | 0.0        | 13.2       | 12.1       | 5.0         |
| Total Recoverable Mercury               | mg/kg dry wt  | 0.039      | 0.034      | 0.058      | 0.056      | 0.016       |
| Total Recoverable Zinc                  | ma/ka dry wt  | 92         | 39         | 101        | 46         | 34          |
| [ · · · · · · · · · · · · · · · · · · · |               | 0.4400/5.4 | 0.1.00/75  | 0.4.00/0.4 | 04400/047  | 0.400/40    |
|                                         | Sample Name:  | OA186/54   | OA186/75   | OA186/94   | 0A186/QA7  | OA186/16    |
|                                         | Lab Number:   | 1525974.91 | 1525974.92 | 1525974.93 | 1525974.94 | 1525974.95  |
| Total Recoverable Arsenic               | mg/kg dry wt  | 8.1        | 8.9        | 12.7       | 2.6        | 2.9         |
| Total Recoverable Copper                | mg/kg dry wt  | 15.2       | 3.6        | 1.1        | 2.9        | 6.2         |
| Total Recoverable Lead                  | mg/kg dry wt  | 26         | 8.2        | 10.8       | 9.1        | 14.8        |
|                                         | ing/kg dry wt | 0.155      | 0.011      | 0.033      | 0.028      | 0.054       |
|                                         | nig/kg dry Wt | 91         | 49         | ЭI         | 41         | OU          |
|                                         | Sample Name:  | OA186/36   | OA186/55   | OA186/76   | OA186/95   | OA186/QA8   |
|                                         | Lab Number:   | 1525974.96 | 1525974.97 | 1525974.98 | 1525974.99 | 1525974.100 |
| Total Recoverable Arsenic               | mg/kg dry wt  | 11.3       | 8.5        | 7.5        | 13.3       | 2.4         |
| Total Recoverable Copper                | mg/kg dry wt  | 7.0        | 15.6       | 15.5       | 7.7        | 2.8         |
| Total Recoverable Lead                  | mg/kg dry wt  | 10.7       | 27         | 19.5       | 10.8       | 8.8         |
| Total Recoverable Mercury               | mg/kg dry wt  | 0.028      | 0.175      | 0.128      | 0.038      | 0.025       |
| Total Recoverable Zinc                  | mg/kg dry wt  | 70         | 92         | 73         | 90         | 37          |

| Sample Type: Sedime       | nt           |             |             |             |             |             |
|---------------------------|--------------|-------------|-------------|-------------|-------------|-------------|
|                           | Sample Name: | OA186/17    | OA186/37    | OA186/56    | OA186/77    | OA186/96    |
|                           | Lab Number:  | 1525974.101 | 1525974.102 | 1525974.103 | 1525974.104 | 1525974.105 |
| Total Recoverable Arsenic | mg/kg dry wt | 2.8         | 10.8        | 9.7         | 7.7         | 11.9        |
| Total Recoverable Copper  | mg/kg dry wt | 6.1         | 7.0         | 13.4        | 15.9        | 7.2         |
| Total Recoverable Lead    | mg/kg dry wt | 14.2        | 10.8        | 17.5        | 19.6        | 10.3        |
| Total Recoverable Mercury | mg/kg dry wt | 0.059       | 0.044       | 0.053       | 0.127       | 0.033       |
| Total Recoverable Zinc    | mg/kg dry wt | 76          | 70          | 103         | 76          | 61          |
|                           | Sample Name: | OA186/QA9   | OA186/18    | OA186/38    | OA186/57    | OA186/78    |
|                           | Lab Number:  | 1525974.106 | 1525974.107 | 1525974.108 | 1525974.109 | 1525974.110 |
| Total Recoverable Arsenic | mg/kg dry wt | 2.4         | 3.0         | 11.0        | 9.8         | 7.5         |
| Total Recoverable Copper  | mg/kg dry wt | 2.8         | 5.9         | 7.0         | 13.4        | 15.7        |
| Total Recoverable Lead    | mg/kg dry wt | 8.6         | 14.0        | 10.6        | 17.6        | 19.4        |
| Total Recoverable Mercury | mg/kg dry wt | 0.026       | 0.050       | 0.029       | 0.050       | 0.108       |
| Total Recoverable Zinc    | mg/kg dry wt | 38          | 75          | 68          | 102         | 75          |
|                           | Sample Name: | OA186/97    | OA186/QA10  | OA186/19    | OA186/39    | OA186/20    |
|                           | Lab Number:  | 1525974.111 | 1525974.112 | 1525974.113 | 1525974.114 | 1525974.115 |
| Total Recoverable Arsenic | mg/kg dry wt | 11.4        | 2.6         | 2.8         | 11.3        | 2.9         |
| Total Recoverable Copper  | mg/kg dry wt | 6.9         | 3.0         | 6.0         | 7.2         | 6.2         |
| Total Recoverable Lead    | mg/kg dry wt | 9.8         | 9.0         | 13.7        | 10.7        | 14.0        |
| Total Recoverable Mercury | mg/kg dry wt | 0.027       | 0.026       | 0.047       | 0.037       | 0.054       |
| Total Recoverable Zinc    | mg/kg dry wt | 59          | 39          | 75          | 70          | 78          |
|                           | Sample Name: | OA186/60    | OA186/79    | Agal10-3    |             |             |
|                           | Lab Number:  | 1525974.116 | 1525974.117 | 1525974.118 |             |             |
| Total Recoverable Arsenic | mg/kg dry wt | 10.0        | 8.0         | 17.4        | -           | -           |
| Total Recoverable Copper  | mg/kg dry wt | 13.3        | 16.1        | 22          | -           | -           |
| Total Recoverable Lead    | mg/kg dry wt | 17.7        | 19.9        | 39          | -           | -           |
| Total Recoverable Mercury | mg/kg dry wt | 0.059       | 0.116       | 10.3        | -           | -           |
| Total Recoverable Zinc    | mg/kg dry wt | 103         | 75          | 50          | -           | -           |

# SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

| Sample Type: Sediment       |                                                                                                                               |                         |           |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|
| Test                        | Method Description                                                                                                            | Default Detection Limit | Sample No |
| Total Recoverable digestion | Nitric / hydrochloric acid digestion. US EPA 200.2.                                                                           | -                       | 1-118     |
| Total Recoverable Arsenic   | Dried sample, sieved as specified (if required).<br>Nitric/Hydrochloric acid digestion, ICP-MS, trace level. US EPA<br>200.2. | 0.2 mg/kg dry wt        | 1-118     |
| Total Recoverable Copper    | Dried sample, sieved as specified (if required).<br>Nitric/Hydrochloric acid digestion, ICP-MS, trace level. US EPA<br>200.2. | 0.2 mg/kg dry wt        | 1-118     |
| Total Recoverable Lead      | Dried sample, sieved as specified (if required).<br>Nitric/Hydrochloric acid digestion, ICP-MS, trace level. US EPA<br>200.2. | 0.04 mg/kg dry wt       | 1-118     |
| Total Recoverable Mercury   | Dried sample, sieved as specified (if required).<br>Nitric/Hydrochloric acid digestion, ICP-MS, trace level. US EPA<br>200.2. | 0.010 mg/kg dry wt      | 1-118     |
| Total Recoverable Zinc      | Dried sample, sieved as specified (if required).<br>Nitric/Hydrochloric acid digestion, ICP-MS, trace level. US EPA<br>200.2. | 0.4 mg/kg dry wt        | 1-118     |

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Graham Corban MSc Tech (Hons) Client Services Manager - Environmental



| R J Hill Laboratories Limited | Te |
|-------------------------------|----|
| 1 Clyde Street                | Fa |
| Private Bag 3205              | E  |
| Hamilton 3240. New Zealand    | W  |

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

Page 1 of 5

# QUALITY ASSURANCE REPORT

| Client:  | Auckland Council     | Lab No:        |
|----------|----------------------|----------------|
| Contact: | P Williams           | Date Regist    |
|          | C/- Auckland Council | Date Report    |
|          | 1 The Strand         | Quote No:      |
|          | TAKAPUNA 0622        | Order No:      |
|          |                      | Client Refe    |
|          |                      | <b>•</b> • • • |

# Lab No:1525974QCPv1Date Registered:18-Jan-2016Date Reported:03-Feb-2016Quote No:74152Order No:3000226162Client Reference:AC/NIWA RSCMP 2015/16Submitted By:Katie Cartner

#### Blank QCs

| Digest Blank 1 PrepWS esDig - Env Soils by ICPMS (low level): 2560.9 |              |         |                |                        |  |  |
|----------------------------------------------------------------------|--------------|---------|----------------|------------------------|--|--|
|                                                                      |              | Results | Control Limits | Outside Limit (Yes/No) |  |  |
| Total Recoverable Arsenic                                            | mg/kg dry wt | < 0.2   | -0.20 - 0.20   | No                     |  |  |
| Total Recoverable Copper                                             | mg/kg dry wt | < 0.2   | -0.20 – 0.20   | No                     |  |  |
| Total Recoverable Lead                                               | mg/kg dry wt | < 0.04  | -0.040 - 0.040 | No                     |  |  |
| Total Recoverable Zinc                                               | mg/kg dry wt | < 0.4   | -0.40 - 0.40   | No                     |  |  |

| Digest Blank 2 PrepWS esDig - Env Soils by ICPMS (low level): 2560.10 |              |         |                |                        |  |  |
|-----------------------------------------------------------------------|--------------|---------|----------------|------------------------|--|--|
|                                                                       |              | Results | Control Limits | Outside Limit (Yes/No) |  |  |
| Total Recoverable Arsenic                                             | mg/kg dry wt | < 0.2   | -0.20 - 0.20   | No                     |  |  |
| Total Recoverable Copper                                              | mg/kg dry wt | < 0.2   | -0.20 - 0.20   | No                     |  |  |
| Total Recoverable Lead                                                | mg/kg dry wt | < 0.04  | -0.040 - 0.040 | No                     |  |  |
| Total Recoverable Zinc                                                | mg/kg dry wt | < 0.4   | -0.40 - 0.40   | No                     |  |  |

| Digest Blank 1 PrepWS esD | ig - Env Soils by | ICPMS (low level): 2561.9 |                |                        |
|---------------------------|-------------------|---------------------------|----------------|------------------------|
|                           |                   | Results                   | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Arsenic | mg/kg dry wt      | < 0.2                     | -0.20 - 0.20   | No                     |
| Total Recoverable Copper  | mg/kg dry wt      | < 0.2                     | -0.20 – 0.20   | No                     |
| Total Recoverable Lead    | mg/kg dry wt      | < 0.04                    | -0.040 - 0.040 | No                     |
| Total Recoverable Mercury | mg/kg dry wt      | < 0.010                   | -0.010 – 0.010 | No                     |
| Total Recoverable Zinc    | mg/kg dry wt      | < 0.4                     | -0.40 - 0.40   | No                     |

| Digest Blank 2 PrepWS esD | ig - Env Soils by | ICPMS (low level): 2561.10 |                |                        |
|---------------------------|-------------------|----------------------------|----------------|------------------------|
|                           |                   | Results                    | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Arsenic | mg/kg dry wt      | < 0.2                      | -0.20 - 0.20   | No                     |
| Total Recoverable Copper  | mg/kg dry wt      | < 0.2                      | -0.20 – 0.20   | No                     |
| Total Recoverable Lead    | mg/kg dry wt      | < 0.04                     | -0.040 - 0.040 | No                     |
| Total Recoverable Mercury | mg/kg dry wt      | < 0.010                    | -0.010 – 0.010 | No                     |
| Total Recoverable Zinc    | mg/kg dry wt      | < 0.4                      | -0.40 - 0.40   | No                     |

| Digest Blank 1 PrepWS esD | ig - Env Soils by | ICPMS (low level): 2562.9 |                |                        |
|---------------------------|-------------------|---------------------------|----------------|------------------------|
|                           |                   | Results                   | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Arsenic | mg/kg dry wt      | < 0.2                     | -0.20 - 0.20   | No                     |
| Total Recoverable Copper  | mg/kg dry wt      | < 0.2                     | -0.20 - 0.20   | No                     |
| Total Recoverable Lead    | mg/kg dry wt      | < 0.04                    | -0.040 - 0.040 | No                     |
| Total Recoverable Mercury | mg/kg dry wt      | < 0.010                   | -0.010 – 0.010 | No                     |
| Total Recoverable Zinc    | mg/kg dry wt      | < 0.4                     | -0.40 - 0.40   | No                     |

| Digest Blank 2 PrepWS est   | Dig - Env Soils by  | ICPMS (low level): 2562.10   |                |                        |
|-----------------------------|---------------------|------------------------------|----------------|------------------------|
|                             |                     | Results                      | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Arsenic   | mg/kg dry wt        | < 0.2                        | -0.20 – 0.20   | No                     |
| Total Recoverable Copper    | mg/kg dry wt        | < 0.2                        | -0.20 - 0.20   | No                     |
| Total Recoverable Lead      | mg/kg dry wt        | < 0.04                       | -0.040 - 0.040 | No                     |
| Total Recoverable Mercury   | mg/kg dry wt        | < 0.010                      | -0.010 – 0.010 | No                     |
| Total Recoverable Zinc      | mg/kg dry wt        | < 0.4                        | -0.40 - 0.40   | No                     |
| 100y Dilution Digost Plank  | DropWS ocDig        | Env Soils by ICDMS (low love |                |                        |
|                             | Frepws esbig -      | Results                      | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Arsenic   | mg/kg dry wt        | < 2                          | -2.0 - 2.0     | No                     |
| Total Recoverable Mercury   | ma/ka dry wt        | < 0.10                       | -0.10 - 0.10   | No                     |
|                             |                     |                              |                |                        |
| 10x Dilution Digest Blank P | PrepWS esDig - Ei   | nv Soils by ICPMS (low level | ): 2564.56     | Outside Limit (Ves/Ne) |
| Total Recoverable Arsenic   | ma/ka dry wt        |                              |                | No                     |
|                             | mg/kg dry wt        | < 0.010                      | -0.20 - 0.20   | No                     |
|                             | nig/kg dry wi       | < 0.010                      | -0.010 - 0.010 | NO                     |
| 100x Dilution Digest Blank  | PrepWS esDig -      | Env Soils by ICPMS (low leve | el): 2566.9    |                        |
|                             |                     | Results                      | Control Limits | Outside Limit (Yes/No) |
| I otal Recoverable Arsenic  | mg/kg dry wt        | < 0.2                        | -2.0 - 2.0     | No                     |
| 10x Dilution Digest Blank P | repWS esDig - E     | nv Soils by ICPMS (low level | ): 2567.9      | I                      |
|                             |                     | Results                      | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Mercury   | mg/kg dry wt        | < 0.010                      | -0.010 – 0.010 | No                     |
| 10x Dilution Digest Blank P | PrepWS esDig - Ei   | nv Soils by ICPMS (low level | ): 2567.10     |                        |
|                             |                     | Results                      | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Mercury   | mg/kg dry wt        | < 0.010                      | -0.010 – 0.010 | No                     |
| 100x Dilution Digest Blank  | PrepWS esDig -      | Env Soils by ICPMS (low leve | el): 2568.15   |                        |
|                             |                     | Results                      | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Arsenic   | mg/kg dry wt        | < 2                          | -2.0 - 2.0     | No                     |
| 100x Dilution Digest Blank  | PrepWS esDig -      | Env Soils by ICPMS (low leve | el): 2573.17   |                        |
|                             |                     | Results                      | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Copper    | mg/kg dry wt        | < 2                          | -2.0 - 2.0     | No                     |
| Total Recoverable Zinc      | mg/kg dry wt        | < 4                          | -4.0 - 4.0     | No                     |
| Poforonco Matorial          |                     |                              |                | 1                      |
| OC A5 PronWS os Dig - Env   | Soils by ICPMS      | (IOW IOVAL) · 2560 11        |                |                        |
| CC AS TEPWS CSDIG - Env     |                     | Results                      | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Arsenic   | mg/kg dry wt        | 103                          | 77 – 150       | No                     |
| Total Recoverable Copper    | mg/kg dry wt        | 122                          | 100 – 140      | No                     |
| Total Recoverable Lead      | mg/kg dry wt        | 125                          | 86 – 160       | No                     |
| Total Recoverable Zinc      | ma/ka drv wt        | 820                          | 750 – 940      | No                     |
|                             |                     |                              | ,,             |                        |
| QC A5 PrepWS esDig - Env    | Soils by ICPMS      | (low level): 2560.73         | Control Limito | Outside Limit (Vas/Na) |
| Total Recoverable Arsenic   | ma/ka day wt        | 87                           | 77 150         | No                     |
| Total Recoverable Copper    | ma/ka dayyet        | 106                          | 100 140        | No                     |
| Total Recoverable Load      | mg/kg druut         | 407                          | 100 - 140      | No                     |
|                             | mg/kg dry Wt        | 127                          | 86 - 160       | INO                    |
| I OTAL RECOVERABLE ZINC     | mg/kg dry wt        | 770                          | /50 – 940      | No                     |
| AGAL-10 QC PrepWS esDig     | g - Env Soils by IC | CPMS (low level): 2560.74    |                |                        |
|                             |                     | Results                      | Control Limits | Outside Limit (Yes/No) |
| I otal Recoverable Arsenic  | ma/ka dry wt        | 17 2                         | 16 22          | No                     |
|                             | ing/kg dry wr       | 11.2                         | 10 - 23        | INO                    |

| AGAL-10 QC PrepWS esDig - Env S | Soils by ICPMS | (low level): 2560.74 |                |                        |
|---------------------------------|----------------|----------------------|----------------|------------------------|
|                                 |                | Results              | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Lead mg       | g/kg dry wt    | 40                   | 32 – 48        | No                     |
| Total Recoverable Zinc mg       | g/kg dry wt    | 51                   | 46 - 63        | No                     |

| QC A5 PrepWS esDig - Env  | Soils by ICPMS | (low level): 2561.11 |                |                        |
|---------------------------|----------------|----------------------|----------------|------------------------|
|                           |                | Results              | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Arsenic | mg/kg dry wt   | 101                  | 77 – 150       | No                     |
| Total Recoverable Copper  | mg/kg dry wt   | 114                  | 100 – 140      | No                     |
| Total Recoverable Lead    | mg/kg dry wt   | 115                  | 86 – 160       | No                     |
| Total Recoverable Mercury | mg/kg dry wt   | 0.39                 | 0.29 – 0.47    | No                     |
| Total Recoverable Zinc    | mg/kg dry wt   | 790                  | 750 – 940      | No                     |

| QC A5 PrepWS esDig - Env  | Soils by ICPMS ( | (low level): 2561.68 |                |                        |
|---------------------------|------------------|----------------------|----------------|------------------------|
|                           |                  | Results              | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Arsenic | mg/kg dry wt     | 104                  | 77 – 150       | No                     |
| Total Recoverable Copper  | mg/kg dry wt     | 105                  | 100 – 140      | No                     |
| Total Recoverable Lead    | mg/kg dry wt     | 109                  | 86 – 160       | No                     |
| Total Recoverable Mercury | mg/kg dry wt     | 0.37                 | 0.29 – 0.47    | No                     |
| Total Recoverable Zinc    | mg/kg dry wt     | 760                  | 750 – 940      | No                     |

| AGAL-10 QC PrepWS esDig - Env Soi | Is by ICPMS (low I | level): 2561.69 |                |                        |
|-----------------------------------|--------------------|-----------------|----------------|------------------------|
|                                   | F                  | Results         | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Arsenic mg/kg   | ı dry wt           | 18.1            | 16 – 23        | No                     |
| Total Recoverable Copper mg/kg    | ı dry wt           | 24              | 20 – 26        | No                     |
| Total Recoverable Lead mg/kg      | ı dry wt           | 40              | 32 – 48        | No                     |
| Total Recoverable Mercury mg/kg   | ı dry wt           | 10.7            | 10 – 14        | No                     |
| Total Recoverable Zinc mg/kg      | ı dry wt           | 51              | 46 - 63        | No                     |

| QC A5 PrepWS esDig - Env  | Soils by ICPMS ( | (low level): 2562.11 |                |                        |
|---------------------------|------------------|----------------------|----------------|------------------------|
|                           |                  | Results              | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Arsenic | mg/kg dry wt     | 93                   | 77 – 150       | No                     |
| Total Recoverable Copper  | mg/kg dry wt     | 107                  | 100 – 140      | No                     |
| Total Recoverable Lead    | mg/kg dry wt     | 119                  | 86 – 160       | No                     |
| Total Recoverable Mercury | mg/kg dry wt     | 0.34                 | 0.29 – 0.47    | No                     |
| Total Recoverable Zinc    | mg/kg dry wt     | 810                  | 750 – 940      | No                     |

| QC A5 PrepWS esDig - Env  | Soils by ICPMS | (low level): 2562.68 |                |                        |
|---------------------------|----------------|----------------------|----------------|------------------------|
|                           |                | Results              | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Arsenic | mg/kg dry wt   | 95                   | 77 – 150       | No                     |
| Total Recoverable Copper  | mg/kg dry wt   | 118                  | 100 – 140      | No                     |
| Total Recoverable Lead    | mg/kg dry wt   | 110                  | 86 – 160       | No                     |
| Total Recoverable Mercury | mg/kg dry wt   | 0.35                 | 0.29 – 0.47    | No                     |
| Total Recoverable Zinc    | mg/kg dry wt   | 780                  | 750 – 940      | No                     |

| AGAL-10 QC PrepWS esDig   | - Env Soils by I | CPMS (low level): 2562.69 |                |                        |
|---------------------------|------------------|---------------------------|----------------|------------------------|
|                           |                  | Results                   | Control Limits | Outside Limit (Yes/No) |
| Total Recoverable Arsenic | mg/kg dry wt     | 16.9                      | 16 – 23        | No                     |
| Total Recoverable Copper  | mg/kg dry wt     | 23                        | 20 – 26        | No                     |
| Total Recoverable Lead    | mg/kg dry wt     | 39                        | 32 – 48        | No                     |
| Total Recoverable Mercury | mg/kg dry wt     | 10.2                      | 10 – 14        | No                     |
| Total Recoverable Zinc    | mg/kg dry wt     | 52                        | 46 – 63        | No                     |

| QC A5 PrepWS esDig - E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Env Soils by ICPMS (                                                                                                                                                                                               | low level): 2564.10                                                                                                                                                                                                                                                                                                                                                                                   |    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                    | Results                                                                                                                                                                                                                                                                                                                                                                                               | Co | ntrol Limits                                                                                                                                                                                        | Outside Lin                                                                                                                                                                                                                                                                                                                                                          | nit (Yes/No)                                                                          |
| Total Recoverable Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg dry wt                                                                                                                                                                                                       | 115                                                                                                                                                                                                                                                                                                                                                                                                   |    | 77 – 150                                                                                                                                                                                            | Ν                                                                                                                                                                                                                                                                                                                                                                    | lo                                                                                    |
| Total Recoverable Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg dry wt                                                                                                                                                                                                       | 0.35                                                                                                                                                                                                                                                                                                                                                                                                  | C  | .29 – 0.47                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                                                                                                                                    | lo                                                                                    |
| QC A5 PrepWS esDig - E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Env Soils by ICPMS (                                                                                                                                                                                               | low level): 2566.10                                                                                                                                                                                                                                                                                                                                                                                   | 0- |                                                                                                                                                                                                     | O staile Lie                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |
| Total Recoverable Arconic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ma/lea da cut                                                                                                                                                                                                      | Results                                                                                                                                                                                                                                                                                                                                                                                               | Co |                                                                                                                                                                                                     | Outside Lin                                                                                                                                                                                                                                                                                                                                                          | nit (Yes/No)                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg ary wt                                                                                                                                                                                                       | 109                                                                                                                                                                                                                                                                                                                                                                                                   |    | // – 150                                                                                                                                                                                            | IN                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                    |
| QC A5 PrepWS esDig - E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Env Soils by ICPMS (                                                                                                                                                                                               | low level): 2567.11                                                                                                                                                                                                                                                                                                                                                                                   |    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                    | Results                                                                                                                                                                                                                                                                                                                                                                                               | Co | ntrol Limits                                                                                                                                                                                        | Outside Lin                                                                                                                                                                                                                                                                                                                                                          | nit (Yes/No)                                                                          |
| I otal Recoverable Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg dry wt                                                                                                                                                                                                       | 0.34                                                                                                                                                                                                                                                                                                                                                                                                  | C  | .29 – 0.47                                                                                                                                                                                          | N                                                                                                                                                                                                                                                                                                                                                                    | lo                                                                                    |
| QC A5 PrepWS esDig - E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Env Soils by ICPMS (                                                                                                                                                                                               | low level): 2567.67                                                                                                                                                                                                                                                                                                                                                                                   |    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                    | Results                                                                                                                                                                                                                                                                                                                                                                                               | Co | ntrol Limits                                                                                                                                                                                        | Outside Lin                                                                                                                                                                                                                                                                                                                                                          | nit (Yes/No)                                                                          |
| Total Recoverable Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg dry wt                                                                                                                                                                                                       | 0.35                                                                                                                                                                                                                                                                                                                                                                                                  | C  | .29 – 0.47                                                                                                                                                                                          | N                                                                                                                                                                                                                                                                                                                                                                    | lo                                                                                    |
| AGAL-10 QC PrepWS es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dig - Env Soils by IC                                                                                                                                                                                              | CPMS (low level): 2567.68                                                                                                                                                                                                                                                                                                                                                                             |    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                    | Results                                                                                                                                                                                                                                                                                                                                                                                               | Co | ntrol Limits                                                                                                                                                                                        | Outside Lin                                                                                                                                                                                                                                                                                                                                                          | nit (Yes/No)                                                                          |
| Total Recoverable Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg dry wt                                                                                                                                                                                                       | 10.0                                                                                                                                                                                                                                                                                                                                                                                                  |    | 10 – 14                                                                                                                                                                                             | N                                                                                                                                                                                                                                                                                                                                                                    | lo                                                                                    |
| QC A5 PrepWS esDig - E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Env Soils by ICPMS (                                                                                                                                                                                               | low level): 2573.18                                                                                                                                                                                                                                                                                                                                                                                   |    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                    | Results                                                                                                                                                                                                                                                                                                                                                                                               | Co | ntrol Limits                                                                                                                                                                                        | Outside Lin                                                                                                                                                                                                                                                                                                                                                          | nit (Yes/No)                                                                          |
| Total Recoverable Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg dry wt                                                                                                                                                                                                       | 153                                                                                                                                                                                                                                                                                                                                                                                                   |    | 100 – 140                                                                                                                                                                                           | Ye                                                                                                                                                                                                                                                                                                                                                                   | S <sup>#1</sup>                                                                       |
| Total Recoverable Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt                                                                                                                                                                                                       | 960                                                                                                                                                                                                                                                                                                                                                                                                   |    | 750 – 940                                                                                                                                                                                           | Ye                                                                                                                                                                                                                                                                                                                                                                   | S <sup>#2</sup>                                                                       |
| OC A5 PrenWS esDia - E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Env Soils by ICPMS (                                                                                                                                                                                               | low level) · 2573 15                                                                                                                                                                                                                                                                                                                                                                                  |    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
| CC AS TEPMS CSDIG - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                    | Results                                                                                                                                                                                                                                                                                                                                                                                               | Co | ntrol Limits                                                                                                                                                                                        | Outside Lin                                                                                                                                                                                                                                                                                                                                                          | nit (Yes/No)                                                                          |
| Total Recoverable Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg dry wt                                                                                                                                                                                                       | 125                                                                                                                                                                                                                                                                                                                                                                                                   |    | 100 – 140                                                                                                                                                                                           | N                                                                                                                                                                                                                                                                                                                                                                    | lo                                                                                    |
| Total Recoverable Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ma/ka dry wt                                                                                                                                                                                                       | 920                                                                                                                                                                                                                                                                                                                                                                                                   |    | 750 – 940                                                                                                                                                                                           | N                                                                                                                                                                                                                                                                                                                                                                    | lo                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
| AGAL-10 QC PrepWS es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dig - Env Soils by IC                                                                                                                                                                                              | PMS (low level): 2573.46                                                                                                                                                                                                                                                                                                                                                                              | Co | ntrol Limits                                                                                                                                                                                        | Outoide Lin                                                                                                                                                                                                                                                                                                                                                          | nit (Yee/Ne)                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                                                                                                                                                                     | Unitsine i n                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |
| Total Recoverable Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ma/ka dry wt                                                                                                                                                                                                       | 26                                                                                                                                                                                                                                                                                                                                                                                                    | 00 | 20 - 26                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
| Total Recoverable Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg dry wt                                                                                                                                                                                                       | 26                                                                                                                                                                                                                                                                                                                                                                                                    |    | 20 – 26<br>46 – 63                                                                                                                                                                                  | N                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |
| Total Recoverable Copper<br>Total Recoverable Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                       | 26<br>59                                                                                                                                                                                                                                                                                                                                                                                              |    | 20 – 26<br>46 – 63                                                                                                                                                                                  | N N                                                                                                                                                                                                                                                                                                                                                                  | lo<br>lo                                                                              |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                       | 26<br>59                                                                                                                                                                                                                                                                                                                                                                                              |    | 20 – 26<br>46 – 63                                                                                                                                                                                  | N                                                                                                                                                                                                                                                                                                                                                                    | lo<br>lo                                                                              |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg dry wt<br>mg/kg dry wt<br>y level): 2562.72                                                                                                                                                                  | 26<br>59                                                                                                                                                                                                                                                                                                                                                                                              |    | 20 - 26<br>46 - 63                                                                                                                                                                                  | N N                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg dry wt<br>mg/kg dry wt<br>r level): 2562.72                                                                                                                                                                  | 26<br>59<br>Replicate 1                                                                                                                                                                                                                                                                                                                                                                               |    | 20 - 26<br>46 - 63<br>Replicate                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                    | Pass/Fail                                                                             |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/kg dry wt<br>mg/kg dry wt<br>( level): 2562.72<br>mg/kg dry w                                                                                                                                                   | 26           59           Replicate 1           wt         22.3 ± 2.7                                                                                                                                                                                                                                                                                                                                 |    | 20 - 26<br>46 - 63<br><b>Replicate</b><br>20.6 ± 2.                                                                                                                                                 | 2<br>5                                                                                                                                                                                                                                                                                                                                                               | Pass/Fail Pass                                                                        |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low                                                                                                                                                                                                                                                                                                                                                                                                      | mg/kg dry wt<br>mg/kg dry wt<br>? level): 2562.72<br>mg/kg dry w<br>? level): 2560.68                                                                                                                              | Replicate 1           vt         22.3 ± 2.7                                                                                                                                                                                                                                                                                                                                                           |    | 20 - 26<br>46 - 63<br><b>Replicate</b><br>20.6 ± 2.                                                                                                                                                 | 2<br>5                                                                                                                                                                                                                                                                                                                                                               | Pass/Fail<br>Pass                                                                     |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low                                                                                                                                                                                                                                                                                                                                                                                                      | mg/kg dry wt<br>mg/kg dry wt<br>/ level): 2562.72<br>mg/kg dry v<br>/ level): 2560.68                                                                                                                              | 26           59           Replicate 1           Mt         22.3 ± 2.7           Replicate 1                                                                                                                                                                                                                                                                                                           |    | 20 - 26<br>46 - 63<br>Replicate<br>20.6 ± 2.                                                                                                                                                        | 2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                     | Pass/Fail<br>Pass/Fail<br>Pass                                                        |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low<br>Total Recoverable Copper                                                                                                                                                                                                                                                                                                                                                                          | mg/kg dry wt<br>mg/kg dry wt<br>? level): 2562.72<br>mg/kg dry w<br>? level): 2560.68<br>mg/kg dry w                                                                                                               | Replicate 1           vt         22.3 ± 2.7           Replicate 1           vt         21.4 ± 3.0                                                                                                                                                                                                                                                                                                     |    | 20 - 26<br>46 - 63<br><b>Replicate</b><br>20.6 ± 2.<br><b>Replicate</b><br>20.5 ± 2.                                                                                                                | 2<br>5<br>2<br>9                                                                                                                                                                                                                                                                                                                                                     | Pass/Fail Pass Pass/Fail Pass                                                         |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low<br>Total Recoverable Copper<br>Total Recoverable Lead                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt<br>mg/kg dry wt<br>/ level): 2562.72<br>mg/kg dry v<br>/ level): 2560.68<br>mg/kg dry v<br>mg/kg dry v                                                                                                | Replicate 1           Mt         22.3 ± 2.7           Replicate 1           Mt         21.4 ± 3.0           Mt         28.7 ± 3.5                                                                                                                                                                                                                                                                     |    | 20 - 26<br>46 - 63<br><b>Replicate</b><br>20.6 ± 2.<br><b>Replicate</b><br>20.5 ± 2.<br>27.4 ± 3.                                                                                                   | 2<br>9<br>3                                                                                                                                                                                                                                                                                                                                                          | Pass/Fail Pass Pass/Fail Pass Pass Pass Pass                                          |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead                                                                                                                                                                                                                                                                                                                      | mg/kg dry wt<br>mg/kg dry wt<br>v level): 2562.72<br>mg/kg dry w<br>v level): 2560.68<br>mg/kg dry w<br>mg/kg dry w                                                                                                | Replicate 1           vt         22.3 ± 2.7           Replicate 1           vt         21.4 ± 3.0           vt         28.7 ± 3.5           vt         192 ± 31                                                                                                                                                                                                                                       |    | 20 - 26<br>46 - 63<br><b>Replicate</b><br>20.6 ± 2.<br><b>Replicate</b><br>20.5 ± 2.<br>27.4 ± 3.<br>181 ± 25                                                                                       | 2<br>5<br>2<br>9<br>3<br>9                                                                                                                                                                                                                                                                                                                                           | Pass/Fail Pass Pass/Fail Pass Pass Pass Pass Pass                                     |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Env Soils by ICPMS (low                                                                                                                                                                                                                                                                                           | mg/kg dry wt<br>mg/kg dry wt<br>7 level): 2562.72<br>mg/kg dry v<br>7 level): 2560.68<br>mg/kg dry v<br>mg/kg dry v<br>mg/kg dry v                                                                                 | Replicate 1           Mt         22.3 ± 2.7           Replicate 1           Mt         21.4 ± 3.0           Mt         28.7 ± 3.5           Mt         192 ± 31                                                                                                                                                                                                                                       |    | 20 - 26<br>46 - 63<br><b>Replicate</b><br>20.6 ± 2.<br><b>Replicate</b><br>20.5 ± 2.<br>27.4 ± 3.<br>181 ± 25                                                                                       | 2<br>2<br>9<br>3<br>9                                                                                                                                                                                                                                                                                                                                                | Pass/Fail Pass Pass Pass Pass Pass Pass Pass                                          |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Zinc<br>Env Soils by ICPMS (low                                                                                                                                                                                                                                                                 | mg/kg dry wt<br>mg/kg dry wt<br>v level): 2562.72<br>mg/kg dry w<br>v level): 2560.68<br>mg/kg dry w<br>mg/kg dry w<br>v level): 2564.47                                                                           | 26         59         Replicate 1         vt       22.3 ± 2.7         Replicate 1         vt       21.4 ± 3.0         vt       28.7 ± 3.5         vt       192 ± 31         Replicate 1                                                                                                                                                                                                               |    | 20 - 26<br>46 - 63<br><b>Replicate</b><br>20.6 ± 2.<br><b>Replicate</b><br>20.5 ± 2.<br>27.4 ± 3.<br>181 ± 29<br><b>Replicate</b>                                                                   | 2<br>5<br>2<br>9<br>3<br>9<br>3<br>2                                                                                                                                                                                                                                                                                                                                 | Pass/Fail Pass Pass Pass Pass Pass Pass Pass                                          |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Zinc<br>Env Soils by ICPMS (low<br>Total Recoverable Arsenic                                                                                                                                                                                                                                    | mg/kg dry wt<br>mg/kg dry wt<br>r level): 2562.72<br>mg/kg dry w<br>r level): 2560.68<br>mg/kg dry w<br>mg/kg dry w<br>r level): 2564.47                                                                           | Replicate 1           Mt         22.3 ± 2.7           Replicate 1         Mt           Mt         21.4 ± 3.0           Mt         28.7 ± 3.5           Mt         192 ± 31           Replicate 1         Mt           Mt         192 ± 31                                                                                                                                                             |    | $20 - 26$ $46 - 63$ <b>Replicate</b> $20.6 \pm 2.$ <b>Replicate</b> $20.5 \pm 2.$ $27.4 \pm 3.$ $181 \pm 25$ <b>Replicate</b> $9.56 \pm 0.5$                                                        | 2<br>2<br>3<br>3<br>2<br>2<br>9<br>3<br>2<br>9<br>3<br>2<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>9<br>3<br>9<br>9<br>3<br>9<br>9<br>3<br>9<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                            | Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas                                      |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Zinc<br>Env Soils by ICPMS (low<br>Total Recoverable Arsenic                                                                                                                                                                                                                                    | mg/kg dry wt<br>mg/kg dry wt<br>g level): 2562.72<br>mg/kg dry w<br>g level): 2560.68<br>mg/kg dry w<br>mg/kg dry w<br>g level): 2564.47<br>mg/kg dry w                                                            | 26         59         Replicate 1         vt       22.3 ± 2.7         Replicate 1         vt       21.4 ± 3.0         vt       28.7 ± 3.5         vt       192 ± 31         Replicate 1         vt       10.0 ± 1.1                                                                                                                                                                                   |    | $20 - 26$ $46 - 63$ <b>Replicate</b> $20.6 \pm 2.$ <b>Replicate</b> $20.5 \pm 2.$ $27.4 \pm 3.$ $181 \pm 25$ <b>Replicate</b> $9.56 \pm 0.5$                                                        | 2<br>5<br>2<br>9<br>3<br>9<br>3<br>9<br>2<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>9<br>3<br>9<br>9<br>3<br>9<br>9<br>3<br>9<br>9<br>1<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                | Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas                                      |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Zinc<br>Env Soils by ICPMS (low<br>Total Recoverable Arsenic                                                                                                                                                                                                                                    | mg/kg dry wt<br>mg/kg dry wt<br>r level): 2562.72<br>mg/kg dry w<br>r level): 2560.68<br>mg/kg dry w<br>mg/kg dry w<br>r level): 2564.47<br>mg/kg dry w<br>r level): 2567.61                                       | 26         59         Replicate 1         Mt       22.3 ± 2.7         Replicate 1         Mt       21.4 ± 3.0         Mt       28.7 ± 3.5         Mt       192 ± 31         Replicate 1         Mt       10.0 ± 1.1         Replicate 1                                                                                                                                                               |    | $20 - 26$ $46 - 63$ <b>Replicate</b> $20.6 \pm 2.$ <b>Replicate</b> $20.5 \pm 2.$ $27.4 \pm 3.$ $181 \pm 26$ <b>Replicate</b> $9.56 \pm 0.6$ <b>Replicate</b>                                       | 2<br>2<br>3<br>3<br>2<br>2<br>9<br>3<br>2<br>9<br>3<br>2<br>9<br>3<br>2<br>9<br>3<br>2<br>9<br>3<br>2<br>9<br>3<br>2<br>9<br>3<br>2<br>9<br>3<br>2<br>9<br>3<br>2<br>9<br>3<br>3<br>9<br>3<br>3<br>9<br>3<br>3<br>9<br>3<br>3<br>9<br>3<br>3<br>9<br>3<br>3<br>9<br>3<br>3<br>9<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     | Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas                                      |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Arsenic<br>Env Soils by ICPMS (low<br>Total Recoverable Arsenic                                                                                                                                                                                                       | mg/kg dry wt<br>mg/kg dry wt<br>revel): 2562.72<br>mg/kg dry w<br>revel): 2560.68<br>mg/kg dry w<br>mg/kg dry w<br>revel): 2564.47<br>mg/kg dry w<br>revel): 2567.61<br>mg/kg dry w                                | 26         59         Replicate 1         Mt       22.3 ± 2.7         Replicate 1         Mt       21.4 ± 3.0         Mt       28.7 ± 3.5         Mt       192 ± 31         Replicate 1         Mt       10.0 ± 1.1         Replicate 1         Mt       0.147 ± 0.019                                                                                                                                |    | $20 - 26$ $46 - 63$ $Replicate$ $20.6 \pm 2.$ $20.5 \pm 2.$ $27.4 \pm 3.$ $181 \pm 29$ $Replicate$ $9.56 \pm 0.9$ $Replicate$ $0.133 \pm 0.0$                                                       | 2<br>5<br>2<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>2<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                    | Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas                                      |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Zinc<br>Env Soils by ICPMS (low<br>Total Recoverable Arsenic<br>Env Soils by ICPMS (low<br>Total Recoverable Mercury<br>Env Soils by ICPMS (low                                                                                                                                                 | mg/kg dry wt<br>mg/kg dry wt<br>r level): 2562.72<br>mg/kg dry w<br>r level): 2560.68<br>mg/kg dry w<br>mg/kg dry w<br>r g/kg dry w<br>r level): 2564.47<br>mg/kg dry w<br>r level): 2567.61<br>mg/kg dry w        | 26         59         Replicate 1         Art       22.3 ± 2.7         Replicate 1         Mt       21.4 ± 3.0         Mt       28.7 ± 3.5         Mt       192 ± 31         Replicate 1         Mt       10.0 ± 1.1         Replicate 1         Mt       0.147 ± 0.019                                                                                                                               |    | $20 - 26$ $46 - 63$ <b>Replicate</b> $20.6 \pm 2.$ <b>Replicate</b> $20.5 \pm 2.$ $27.4 \pm 3.$ $181 \pm 25$ <b>Replicate</b> $9.56 \pm 0.5$ <b>Replicate</b> $0.133 \pm 0.0$                       | Outside Lin         N         2         5         2         9         3         9         3         9         3         9         3         9         18                                                                                                                                                                                                             | Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas                                      |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Zinc<br>Env Soils by ICPMS (low<br>Total Recoverable Arsenic<br>Env Soils by ICPMS (low<br>Total Recoverable Mercury<br>Env Soils by ICPMS (low                                                                                                                                                 | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry w<br>revel): 2562.72<br>mg/kg dry w<br>mg/kg dry w<br>mg/kg dry w<br>revel): 2564.47<br>mg/kg dry w<br>revel): 2567.61<br>mg/kg dry w                    | 26         59         Replicate 1         vt       22.3 ± 2.7         Replicate 1         vt       21.4 ± 3.0         vt       28.7 ± 3.5         vt       192 ± 31         Replicate 1         vt       10.0 ± 1.1         Replicate 1         vt       0.147 ± 0.019         Replicate 1                                                                                                            |    | $20 - 26$ $46 - 63$ <b>Replicate</b> $20.6 \pm 2.$ <b>Replicate</b> $20.5 \pm 2.$ $27.4 \pm 3.$ $181 \pm 29$ <b>Replicate</b> $9.56 \pm 0.9$ <b>Replicate</b> $0.133 \pm 0.0$ <b>Replicate</b>      | 2<br>2<br>3<br>2<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>2<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                 | Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas                                      |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Zinc<br>Env Soils by ICPMS (low<br>Total Recoverable Arsenic<br>Env Soils by ICPMS (low<br>Total Recoverable Mercury<br>Env Soils by ICPMS (low<br>Total Recoverable Mercury                                                                                                                    | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>r level): 2562.72<br>mg/kg dry w<br>mg/kg dry w<br>mg/kg dry w<br>r level): 2564.47<br>mg/kg dry w<br>r level): 2567.61<br>mg/kg dry w<br>r level): 2567.61        | 26         59         Replicate 1         Art       22.3 ± 2.7         Replicate 1         Mt       21.4 ± 3.0         Mt       28.7 ± 3.5         Mt       192 ± 31         Replicate 1         Mt       10.0 ± 1.1         Replicate 1         Mt       0.147 ± 0.019         Replicate 1         Mt       0.147 ± 0.019                                                                            |    | $20 - 26$ $46 - 63$ $Replicate$ $20.6 \pm 2.$ $Replicate$ $20.5 \pm 2.$ $27.4 \pm 3.$ $181 \pm 26$ $9.56 \pm 0.6$ $Replicate$ $0.133 \pm 0.0$ $Replicate$ $12.0 \pm 1.$                             | Outside Lin         N         2         5         2         9         3         9         3         9         3         9         3         9         18         2         18         2         3         2         3                                                                                                                                                | Pass/Fail<br>Pass/Fail<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas |
| Total Recoverable Copper<br>Total Recoverable Zinc<br>Replicates<br>Env Soils by ICPMS (low<br>Total Recoverable Lead<br>Env Soils by ICPMS (low<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Accel<br>Env Soils by ICPMS (low<br>Total Recoverable Arsenic<br>Env Soils by ICPMS (low<br>Total Recoverable Mercury<br>Env Soils by ICPMS (low<br>Total Recoverable Mercury<br>Env Soils by ICPMS (low<br>Total Recoverable Arsenic<br>Total Recoverable Arsenic<br>Total Recoverable Arsenic | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry w<br>revel): 2562.72<br>mg/kg dry w<br>mg/kg dry w<br>mg/kg dry w<br>revel): 2564.47<br>mg/kg dry w<br>revel): 2567.61<br>mg/kg dry w<br>revel): 2561.33 | 26         59         Replicate 1         vt       22.3 ± 2.7         Replicate 1         vt       21.4 ± 3.0         vt       28.7 ± 3.5         vt       192 ± 31         Replicate 1         vt       10.0 ± 1.1         Replicate 1         vt       0.147 ± 0.019         Replicate 1         vt       0.147 ± 0.019         Replicate 1         vt       11.7 ± 1.2         vt       26.1 ± 3.7 |    | $20 - 26$ $46 - 63$ $Replicate$ $20.6 \pm 2.$ $20.6 \pm 2.$ $20.5 \pm 2.$ $27.4 \pm 3.$ $181 \pm 25$ $Replicate$ $9.56 \pm 0.5$ $Replicate$ $0.133 \pm 0.6$ $Replicate$ $12.0 \pm 1.$ $26.5 \pm 3.$ | 2<br>3<br>2<br>3<br>3<br>2<br>2<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>3<br>9<br>9<br>3<br>9<br>9<br>3<br>9<br>9<br>3<br>9<br>9<br>3<br>9<br>9<br>3<br>9<br>9<br>3<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas                                      |

| Env Soils by ICPMS (low leve | el): 2561.33 |               |               |           |
|------------------------------|--------------|---------------|---------------|-----------|
|                              |              | Replicate 1   | Replicate 2   | Pass/Fail |
| Total Recoverable Mercury    | mg/kg dry wt | 0.134 ± 0.018 | 0.133 ± 0.018 | Pass      |
| Total Recoverable Zinc       | mg/kg dry wt | 132 ± 22      | 132 ± 22      | Pass      |
| Env Soils by ICPMS (low leve | el): 2565.73 |               |               |           |
|                              |              | Replicate 1   | Replicate 2   | Pass/Fail |
| Total Recoverable Copper     | mg/kg dry wt | 17.5 ± 2.5    | 17.4 ± 2.5    | Pass      |
| Total Recoverable Lead       | mg/kg dry wt | 23.1 ± 2.8    | 23.2 ± 2.8    | Pass      |
| Total Recoverable Mercury    | mg/kg dry wt | 0.134 ± 0.018 | 0.131 ± 0.017 | Pass      |
| Total Recoverable Zinc       | mg/kg dry wt | 153 ± 25      | 149 ± 24      | Pass      |
| Env Soils by ICPMS (low leve | el): 2562.21 |               |               |           |
|                              |              | Replicate 1   | Replicate 2   | Pass/Fail |
| Total Recoverable Arsenic    | mg/kg dry wt | 10.1 ± 1.1    | 10.1 ± 1.1    | Pass      |
| Total Recoverable Copper     | mg/kg dry wt | 13.2 ± 1.9    | 13.2 ± 1.9    | Pass      |

#### Analyst's Comments

Total Recoverable Lead

Total Recoverable Zinc

Total Recoverable Mercury

<sup>#1</sup> It has been noted that the QCA 5 (our in-house QC) for Copper is out of range for our In-House Confidence Limits, however a second QCA5 was also run, giving a Copper result of 125mg/kg which is well within our confidence limits of 102 136mg/kg. The high Copper result for QCA5 was noted but the run was accepted based on the good results for the second QC sample.

17.3 ± 2.1

 $0.0579 \pm 0.0096$ 

 $101 \pm 17$ 

mg/kg dry wt

mg/kg dry wt

mg/kg dry wt

17.4 ± 2.1

 $0.0533 \pm 0.0092$ 

 $101 \pm 17$ 

Pass

Pass

Pass

<sup>#2</sup> It has been noted that the QCA 5 (our in-house QC) for Zinc is out of range for our In-House Confidence Limits, however a second QCA5 was also run, giving a Zinc result of 916mg/kg which is well within our confidence limits of 747 941.mg/kg The high Zinc result for QCA5 was noted but the run was accepted based on the good results for the second QC sample.



